精英家教网 > 高中数学 > 题目详情
绵阳市农科所研究出一种新的棉花品种,为监测长势状况.从甲、乙两块试验田中各抽取了10株棉花苗,量出它们的株高如下(单位:厘米):
37 21 31 20 29 19 32 23 25 33
10 30 47 27 46 14 26 10 44 46
(Ⅰ)画出两组数据的茎叶图,并根据茎叶图对甲、乙两块试验田中棉花棉的株高进行比较,写出两个统计结论;
(Ⅱ)从甲、乙两块试验田中棉花株高在[30,40]中抽4株,记在乙试验田中取得的棉花苗株数为ξ,求ξ的分布列和数学期望Eξ(结果保留分数).
考点:离散型随机变量的期望与方差,茎叶图
专题:应用题,概率与统计
分析:(Ⅰ)根据从甲、乙两块试验田中各抽取了10株棉花苗,它们的株高,可画出两组数据的茎叶图,即可得出结论;
(Ⅱ)ξ的取值为0,1.求出相应的概率,即可求ξ的分布列和数学期望Eξ.
解答: 解:(Ⅰ)画出的茎叶图如右所示.
根据茎叶图可得统计结论如下:
结论一:甲试验田棉花苗的平均珠高度小于乙试验田棉花苗的平均珠高.
结论二:甲试验田棉花苗比乙试验田棉花苗长得整齐. …(6分)
(Ⅱ)ξ的取值为0,1.
P(ξ=0)=
C
4
4
C
4
5
=
1
5
P(ξ=1)=
C
1
1
C
3
4
C
4
5
=
4
5

∴ξ的分布列:
ξ 0 1
P
1
5
4
5
…(11分)Eξ=0×
1
5
+1×
4
5
=
4
5
.…(12分)
点评:本题主要考查了茎叶图,考查离散型随机变量及其分布列和数学期望,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(1-3x)2014=a0+a1x+a2x+…+a2014x2014,则
a1
3
+
a2
32
+…+
a2014
32014
的值为(  )
A、3B、0C、-1D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是圆x2+y2=4上的任意一点,过P作x轴的垂线段PD,D为垂足,M是线段PD上的点,且满足|DM|=m|PD|(0<m<1),当点P在圆上运动时,记M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过曲线C的左焦点F作斜率为
2
2
的直线l交曲线C于A、B两点,点Q满足
OA
+
OB
+
OQ
=
0
,是否存在实数m,使得点Q在曲线C上,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知c>0,且c≠1.设p:函数y=cx在上单调递减;q:函数f(x)=x2-2cx+1在(
1
2
,+∞)上为增函数.
(1)若p为真,¬q为假,求实数c的取值范围.
(2)若“p且q”为假,“p或q”为真,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
x
1+x2
是定义在(-1,1)上的函数
(1)判断函数f(x)的奇偶性;
(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过80km/h,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的
1
4
倍,固定成本为a元.
(1)将全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大的速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-4<x<2},B={x|x<-5或x>1},C={x|m-1<x<m+1}.
(1)求A∪B,A∩(∁RB);
(2)若B∩C=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
1+tan(π+α)
1+tan(2π-α)
=3+2
2
,求cos2(π-α)+sin(
2
+α)cos(
π
2
+α)
+2sin2(α-π)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若将(x+y+z)10展开为多项式,经过合并同类项后它的项数是
 

查看答案和解析>>

同步练习册答案