精英家教网 > 高中数学 > 题目详情

已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足bn=,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)若S2为S1,Sm (m∈N)的等比中项,求正整数m的值.
(3)对任意正整数k,将等差数列{an}中落入区间(2k,22k)内项的个数记为ck,求数列{cn}的前n项和Tn

(1)=1+(n1)2=2n1;(2)=12;(3).

解析试题分析:(1)根据题意先确定的值,再根据等差数列的通项公式求解;(2)根据(1)所得的通项公式求出,利用裂项求和法求出其前项和,再根据等比中项的定义列式求解;(3))对任意正整数k,,则,而,由题意可知 ,利用分组求和法可解答.
试题解析:(1)由题意,得解得< d <.           2分
又d∈Z,∴d=2.
=1+(n1)2=2n1.             4分
(2)∵            ..6分
       7分
 ()的等比中项,
,即
解得=12.                                               .9分
(3)对任意正整数k,,则,
,由题意可知   ,                  12分
于是

.                                 14分
考点:等差数列的通项公式、裂项求和法、分组求和、等比数列前项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等差数列中,,公差,且它的第2项,第5项,第14项分别是等比数列的第2项,第3项,第4项.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列对任意自然数均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的各项都是正数,且对任意,都有,其中 为数列的前项和。
(1)求证数列是等差数列;
(2)若数列的前项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为.且
(1)求数列的通项公式;
(2)若,数列满足:,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,且.
(I)求数列的通项公式;
(II)设等比数列,若,求数列的前项和
(Ⅲ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,公差,且成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且
(1)求数列的通项公式
(2)令,求数列前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:的前n项和为
(1)求
(2)令,求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).
(I)求数列{an}的通项公式及的值;
(Ⅱ)比较+++ +Sn的大小.

查看答案和解析>>

同步练习册答案