精英家教网 > 高中数学 > 题目详情
在数列{an}中a1=
1
2
a2=
1
5
,且an+1=
(n-1)an
n-2an
(n≥2)

(1)求a3、a4,并求出数列{an}的通项公式;
(2)设bn=
anan+1
an
+
an+1
,求证:对?n∈N*,都有b1+b2+…bn
3n-1
3
分析:(1)利用数列递推式,计算a3、a4,猜想通项,利用数学归纳法证明数列{an}的通项公式;
(2)利用裂项法求和,再用分析法进行证明.
解答:(1)解:∵a1=
1
2
a2=
1
5
an+1=
(n-1)an
n-2an
(n≥2)

∴a3=
1
8
,a4=
1
11

猜想an=
1
3n-1
,利用数学归纳法证明如下:
①显然当n=1,2,3,4时,结论成立;
②假设当n=k(k≥3)时,结论成立,即ak=
1
3k-1

则n=k+1时,ak+1=
(k-1)ak
k-2ak
=
(k-1)•
1
3k-1
k-2•
1
3k-1
=
k-1
(3k+2)(k-1)
=
1
3(k+1)-1

∴n=k+1时,结论成立
综上,an=
1
3n-1

(2)证明:bn=
anan+1
an
+
an+1
=
1
3
3n+2
-
3n-1

∴b1+b2+…+bn=
1
3
[(
5
-
2
)+(
8
-
5
)+…+(
3n+2
-
3n-1
)]=
1
3
3n+2
-
2

要证b1+b2+…bn
3n-1
3
,只需证明
1
3
3n+2
-
2
3n-1
3

即证
3n+2
-
2
3n-1

即证3n+2-2
6n+4
<3n-1
即证
6n+4
3
2
,显然成立
∴b1+b2+…+bn
3n-1
3
点评:本题考查数列递推式,考查数列的通项与求和,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面几种推理过程是演绎推理的是(  )
A、某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人
B、两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°
C、由平面三角形的性质,推测空间四面体性质
D、在数列{an}中a1=1,an=
1
2
(an-1+
1
an-1
)(n≥2)
,由此归纳出{an}的通项公式

查看答案和解析>>

科目:高中数学 来源: 题型:

下面几种推理过程是演绎推理的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中a1=1,an+1=an+
1
n2+n
,则an=
2n-1
n
2n-1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•南汇区一模)在数列{an}中a1=-13,且3an=3an+1-2,则当前n项和sn取最小值时n的值是
20
20

查看答案和解析>>

同步练习册答案