精英家教网 > 高中数学 > 题目详情

【题目】 已知双曲线的离心率,双曲线上任意一点到其右焦点的最小距离为.

1)求双曲线的方程.

2)过点是否存在直线,使直线与双曲线交于两点,且点是线段的中点?若直线存在,请求出直线的方程;若不存在,说明理由.

【答案】12)不存在,详见解析

【解析】

1)由题意,得到联立即得解;

2)点差法得到直线l的斜率,即直线方程为,代入双曲线的方程联立,验证即可.

解:(1)由离心率,得.①

又双曲线上任意一点到其右焦点的最小距离为,则.②

①②,解得,则

双曲线的方程为.

2)假设存在过点的直线,使直线与双曲线交于两点,且点是线段的中点.

,则有

两式作差,得,即.

又点是线段的中点,则

直线的斜率

则直线的方程为,即

代入双曲线的方程,得

,方程没有实数解.

过点不存在直线,使直线与双曲线交于两点,且点是线段的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点,过作倾斜角互补的两条不同直线.

1)求抛物线的方程及准线方程;

2)设直线分别交抛物线两点(均不与重合,如图),记直线的斜率为正数,若以线段为直径的圆与抛物线的准线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知M为圆Cx2y24x14y450上任意一点,且点Q(-2,3).

1)求|MQ|的最大值和最小值;

2)若Mmn),求的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的极值点;

(Ⅱ)若直线过点,并且与曲线相切,求直线的方程;

(Ⅲ)设函数,其中,求函数在区间上的最小值.(其中为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为椭圆的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线轴交于,过点的直线与椭圆交于两不同点,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有( )种

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱锥P-ABCD中,PA平面ABCD,底面ABCD为直角梯形,PA=AD=DC=2,AB=4且ABCDBAD=90°.

(1)求证:BCPC

(2)PB与平面PAC所成角的正弦值.

查看答案和解析>>

同步练习册答案