已知数列{an}的前n项和为Sn,满足an+Sn=2n.
(Ⅰ)证明:数列{an-2}为等比数列,并求出an;
(Ⅱ)设bn=(2-n)(an-2),求{bn}的最大项.
分析:(Ⅰ)由题设条件进行变形,整理成等比数列的形式,得证.
(Ⅱ)求出bn=(2-n)(an-2)的通项公式,再作差比较相邻项的大小,即可找出最大项.
解答:解:(Ⅰ)证明:由a
1+s
1=2a
1=2得a
1=1;
由a
n+S
n=2n得
a
n+1+S
n+1=2(n+1)
两式相减得2a
n+1-a
n=2,即2a
n+1-4=a
n-2,即a
n+1-2=
(a
n-2)
是首项为a
1-2=-1,公比为
的等比数列.故a
n-2=-
()n-1,故a
n=2-
()n-1,.
(Ⅱ)解:由(Ⅰ)知
bn=(2-n)•(-1)•()n-1=(n-2)•()n-1由
bn+1-bn=-==≥0得n≤3由b
n+1-b
n<0得n>3,所以b
1<b
2<b
3=b
4>b
5>…>b
n故b
n的最大项为
b3=b4=.
点评:本题考查等比关系的确定以及用作差法求数列的最大项,属于数列中的中档题,有一定的综合性,要求答题者有较好的观察能力及转化化归的能力.