精英家教网 > 高中数学 > 题目详情
如图,在边长为a的正方体ABCD-A1B1C1D1中,E,F,G,H分别是CC1,C1D1,D1D,CD的中点,N是BC的中点,M在四边形EFGH上及其内部运动,若MN平面A1BD,则点M轨迹的长度是______.
连接GH、HN,则GHBA1,HNBD,
∵在边长为a的正方体ABCD-A1B1C1D1中,E,F,G,H分别是CC1,C1D1,D1D,CD的中点,
N是BC的中点,M在四边形EFGH上及其内部运动,MN平面A1BD,
∴平面A1BD平面GHN,
又点M在四边形上及其内部运动,
则点M须在线段GH上运动,即满足条件,GH=
2
2
a,
则点M轨迹的长度是
2
2
a

故答案为:
2
2
a
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)如图,若正视方向与AD平行,请在下面(答题区)方框内作出该几何体的正视图并求出正视图面积;
(2)证明:DE平面PBC;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知边长都为1正方形ABCD与正方形ABEF,∠DAF=90°,M,N分别是对角线AC和BF上的点,且AM=FN=a(0<a<
2
)

(1)求证:MN平面BCE;
(2)求MN的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.求证:
(1)BD1平面EAC;
(2)平面EAC⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D为C1B的中点,P为AB边上的动点.
(Ⅰ)当点P为AB的中点时,证明DP平面ACC1A1
(Ⅱ)若AP=3PB,求三棱锥B-CDP的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设四棱锥P-ABCD中,底面ABCD是边长为2的正方形,且PA⊥面ABCD,PA=AB,E为PD的中点.
(1)求证:直线PB面ACE
(2)求证:直线AE⊥面PCD
(3)求直线AC与平面PCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,O是长方体ABCD-A1B1C1D1底面对角线AC与BD的交点,求证:B1O平面A1C1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设平面α平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角形的正方形)如下,E是侧棱PC上的动点.
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置都有BD⊥AE,证明你的结论.

查看答案和解析>>

同步练习册答案