精英家教网 > 高中数学 > 题目详情

己知函数其中a∈R:

(Ⅰ)当a=1时,求曲线y=f(x)在点(2f(2))处的切线方程;

(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.

答案:
解析:

  

  1.

  在

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
x2+a
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①函数f(x)=ln(x+l)-
2
x
在区间(1,2)有零点;
③己知当x∈(0,+∞)时,幕函数y=(m2-m-1)•x-5m-3为减函数,则实数m=2;
③若|a|=2|b|≠0,函数f(x)=
1
3
x3+
1
2
|a|x2+a•b在R上有极值,则向量a.与b的夹角范围为[
π
3
,π]

④已知函数f(x)=lg(x2-2x+a)的值域是R,则a>1.
其中正确命题的序号为
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

己知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=loga(x+1)(其中a>0且a≠1)
(1)求函数y=f(x)的解析式;
(2)当x为何值时,f(x)的值的小于0?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省衡阳八中高二(下)4月学业水平模拟考试数学(理科)(解析版) 题型:解答题

己知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=loga(x+1)(其中a>0且a≠1)
(1)求函数y=f(x)的解析式;
(2)当x为何值时,f(x)的值的小于0?

查看答案和解析>>

同步练习册答案