精英家教网 > 高中数学 > 题目详情

【题目】盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了盲盒经济”.某款盲盒内可能装有某一套玩偶的三种样式,且每个盲盒只装一个.

1)若每个盲盒装有三种样式玩偶的概率相同.某同学已经有了样式的玩偶,若他再购买两个这款盲盒,恰好能收集齐这三种样式的概率是多少?

2)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有的人购买了该款盲盒,在这些购买者当中,女生占;而在未购买者当中,男生女生各占.请根据以上信息填写下表,并分析是否有的把握认为购买该款盲盒与性别有关?

女生

男生

总计

购买

未购买

总计

参考公式:,其中.

span>参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

3)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:

周数

1

2

3

4

5

6

盒数

16

______

23

25

26

30

由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第456周的数据求线性回归方程,再用第13周数据进行检验.

①请用456周的数据求出关于的线性回归方程

(注:

②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?

【答案】1;(2)填表见解析,有把握认为购买该款盲盒与性别有关;(3)①;②可靠.

【解析】

1)列举出基本事件的总数和事件“他恰好能收集齐这三种样式”所包含的基本事件的个数,利用古典概型的概率计算公式,即可求解.

2)根据题意,得出的列联表,利用公式求得的值,结合附表,即可得到结论;

3)①求得的值,根据公式求得的值,求得回归直线方程;②当时,比较即可得到结论.

1)由题意,基本事件空间为

,其中基本事件的个数为9个,

设事件为:他恰好能收集齐这三种样式,则

其中基本事件的个数为2

所以他恰好能收集齐这三种样式的概率.

2

女生

男生

总计

购买

40

20

60

未购买

70

70

140

总计

110

90

200

.

又因为,故有把握认为购买该款盲盒与性别有关”.

3)①由数据,求得.

由公式求得

.

所以关于的线性回归方程为.

②当时,

同样,当时,.

所以,所得到的线性回归方程是可靠的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,当x[01]时,fx)=x,若在区间(﹣11]内,有两个零点,则实数m的取值范围是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车忽如一夜春风来,遍布了各级城市的大街小巷,为了解我市的市民对共享单车的满意度,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了50人进行分析.若得分低于60分,说明不满意,若得分不低于60分,说明满意,调查满意度得分情况结果用茎叶图表示如图1

(Ⅰ)根据茎叶图找出40岁以上网友中满意度得分的众数和中位数;

(Ⅱ)根据茎叶图完成下面列联表,并根据以上数据,判断是否有的把握认为满意度与年龄有关;

满意

不满意

合计

40岁以下

40岁以上

合计

(Ⅲ)先采用分层抽样的方法从40岁及以下的网友中选取7人,再从这7人中随机选出2人,将频率视为概率,求选出的2人中至少有1人是不满意的概率.

参考格式:,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】辊子是客家传统农具,南方农民犁开田地后,仍有大的土块.农人便用六片叶齿组成辊轴,两侧装上木板,人跨开两脚站立,既能掌握平衡,又能增加重量,让牛拉动辊轴前进,压碎土块,以利于耕种.这六片叶齿又对应着菩萨六度,即布施持戒忍辱精进禅定与般若.若甲乙每人依次有放回地从这六片叶齿中随机取一片,则这两人选的叶齿对应的“度”相同的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论的单调性;

2)若有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是线段上的动点,则下列说法正确的是______(填序号)

①无论点上怎么移动,都有

②无论点上怎么移动,异面直线所成角都不可能是

③当点移动至中点时,直线与平面所成角最大;

④当点移动至中点时,才有相交于一点,记为点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,其中常数.

1)若函数有相同的极值点,求的值;

2)若,判断函数图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】多面体中,△为等边三角形,△为等腰直角三角形,平面平面.

1)求证:

2)若,求平面与平面所成的较小的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过坐标原点O且与圆相交于点AB,圆M过点AB且与直线相切.

1)求圆心M的轨迹C的方程;

2)若圆心在x轴正半轴上面积等于的圆W与曲线C有且仅有1个公共点.

(ⅰ)求出圆W标准方程;

(ⅱ)已知斜率等于的直线,交曲线CEF两点,交圆WPQ两点,求的最小值及此时直线的方程.

查看答案和解析>>

同步练习册答案