精英家教网 > 高中数学 > 题目详情
19.已知点P(x,y)的坐标x,y满足约束条件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤3\\ x≥0,y≥0\end{array}\right.$,且A(1,-2),则$\overrightarrow{OP}•\overrightarrow{OA}$的取值范围为[-3,3].

分析 作出不等式组对应的平面区域,根据向量数量积的定义求出z=$\overrightarrow{OP}•\overrightarrow{OA}$=x-2y,利用z的几何意义,利用数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
设z=$\overrightarrow{OP}•\overrightarrow{OA}$=x-2y,
由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
平移直线y=$\frac{1}{2}x-\frac{z}{2}$,
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$,过点A时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此时z最小,由$\left\{\begin{array}{l}{x-y=-1}\\{x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
此时z=1-2×2=-3,
当直线y=$\frac{1}{2}x-\frac{z}{2}$,过点C(3,0)时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,此时z最大,此时z=3-0=3,
∴目标函数z=x-2y的最小值是-3,最大值3.
故答案为:[-3,3]

点评 本题主要考查线性规划的应用,根据向量数量积的公式进行化简,以及利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知二项式(x2-3x+2)4=x8+a1x7+…+a6x2+a7x+a8,则a6+a8=(  )
A.264B.256C.248D.246

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.与双曲线$\frac{{x}^{2}}{2}-{y}^{2}$=1有相同的渐近线,且焦点坐标是(3,0)的双曲线方程是(  )
A.$\frac{{y}^{2}}{6}-\frac{{x}^{2}}{3}=1$B.$\frac{{x}^{2}}{6}-\frac{{y}^{2}}{3}=1$C.$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{6}=1$D.$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{6}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于△ABC,有如下四个命题:
①若sin2A=sin2B,则△ABC为等腰三角形
②若sinB=cosA,则△ABC是直角三角形
③若sin2A+sin2B>sin2C,则△ABC是钝角三角形
④若$\frac{a}{{cos\frac{A}{2}}}=\frac{b}{{cos\frac{B}{2}}}=\frac{c}{{cos\frac{C}{2}}}$,则△ABC是等边三角形
其中正确的命题的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合$A=\left\{x\right.|\frac{x-1}{2x-1}≤0\left.{\;}\right\},B=\left\{x\right.|-3{x^2}+4x-1>0\left.{\;}\right\}$,则A∩B=(  )
A.$\left\{{x|\frac{1}{2}<x<1}\right\}$B.$\left\{{x|\frac{1}{2}≤x<1}\right\}$C.$\left\{{x|\frac{1}{3}<x<\frac{1}{2}}\right\}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了解某天甲乙两厂的产品质量,采用分层抽样的方法从甲乙两厂生产的产品中分别抽取14件和15件,测量产品中的微量元素x,y的含量(单位:毫克).当产品中的微量元素x,y满足x≥175且y≥75时,该产品为优等品.已知甲厂该天生产的产品共有98件,如表是乙厂的5件产品的测量数据:
编号12345
x169178166175180
y7580777081
(1)求乙厂该天生产的产品数量;
(2)用上述样本数据估计乙厂该天生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品至少有1件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sinx(cosx+sinx)-1
(Ⅰ)求f(x)的最小正周期及最大值;
(Ⅱ)若g(x)=f(x+φ),(-$\frac{π}{2}$<φ<$\frac{π}{2}$)在x=$\frac{π}{3}$处取得最大值,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于函数f(x)=3sin(2x+$\frac{π}{6}$),给出下列命题:
①图象关于原点成中心对称;      ②图象关于直线x=$\frac{π}{6}$对称;
③函数f(x)的最大值是3;      ④函数在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上单调递增.
其中所有正确命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某公司对新研发的一种产品进行试销,得到如表数据及散点图:
利润x(元/kg)102030405060
年销量y(kg)115064342426216586
Z=2ln(y)14.112.912.111.110.28.9
其中z=2ln(y),$\overline x=35,\;\;\overline y=455,\;\;\;\overline z=11.55$$\sum_{i=1}^{i=6}{({x_i}}-\overline x{)^2}=1750$,$\sum_{i=1}^{i=6}{({x_i}}-\overline x)•({y_i}-\overline y)=-34580$,$\sum_{i=1}^{i=6}{({x_i}}-\overline x)•({z_i}-\overline z)=-175.5$,${\sum_{i=1}^{i=6}{({{y_i}-\overline y})}^2}=776840$,$\sum_{i=1}^{i=6}{({{y_i}-\overline y})}•({{z_i}-\overline z})=3465.2$
(Ⅰ)根据散点图判断,y与x、z与x哪一对具有较强线性相关性?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字)
(Ⅲ)利润为多少元/kg时,年利润的预报值最大?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线$\overline{y}$=$\stackrel{∧}{a}$+
$\stackrel{∧}{b}$$\overline{x}$的斜率和截距的最小二乘估计分别为:$\widehatb=\frac{{\sum_{i=1}^{i=n}{({{x_i}-\overline x})•({{y_i}-\overline y})}}}{{\sum_{i=1}^{i=n}{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^{i=n}{{x_i}•{y_i}-n•\overline x\overline{•y}}}}{{\sum_{i=1}^{i=n}{{x_i}^2-n•{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb•\overline x$

查看答案和解析>>

同步练习册答案