精英家教网 > 高中数学 > 题目详情
9.某公司对新研发的一种产品进行试销,得到如表数据及散点图:
利润x(元/kg)102030405060
年销量y(kg)115064342426216586
Z=2ln(y)14.112.912.111.110.28.9
其中z=2ln(y),$\overline x=35,\;\;\overline y=455,\;\;\;\overline z=11.55$$\sum_{i=1}^{i=6}{({x_i}}-\overline x{)^2}=1750$,$\sum_{i=1}^{i=6}{({x_i}}-\overline x)•({y_i}-\overline y)=-34580$,$\sum_{i=1}^{i=6}{({x_i}}-\overline x)•({z_i}-\overline z)=-175.5$,${\sum_{i=1}^{i=6}{({{y_i}-\overline y})}^2}=776840$,$\sum_{i=1}^{i=6}{({{y_i}-\overline y})}•({{z_i}-\overline z})=3465.2$
(Ⅰ)根据散点图判断,y与x、z与x哪一对具有较强线性相关性?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字)
(Ⅲ)利润为多少元/kg时,年利润的预报值最大?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线$\overline{y}$=$\stackrel{∧}{a}$+
$\stackrel{∧}{b}$$\overline{x}$的斜率和截距的最小二乘估计分别为:$\widehatb=\frac{{\sum_{i=1}^{i=n}{({{x_i}-\overline x})•({{y_i}-\overline y})}}}{{\sum_{i=1}^{i=n}{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^{i=n}{{x_i}•{y_i}-n•\overline x\overline{•y}}}}{{\sum_{i=1}^{i=n}{{x_i}^2-n•{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb•\overline x$

分析 (Ⅰ)根据散点图得出,z与x对应的散点图基本都在一条直线附近,线性相关性更强些;
(Ⅱ)根据公式计算出回归方程的系数,即可写出回归方程;
(Ⅲ)根据回归方程求出年利润函数p=xy,利用导数求出函数p取最大值时x的值即可.

解答 解:(Ⅰ)根据散点图判断,z与x对应的散点图基本都在一条直线附近,
相对y与x具有较强的线性相关性;
(Ⅱ)∵$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{i=6}{(x}_{i}-\overline{x})•{(z}_{i}-\overline{z})}{{\sum_{i=1}^{i=6}{(x}_{i}-\overline{x})}^{2}}$=$\frac{-175.5}{1750}$≈-0.10,
∴$\stackrel{∧}{a}$=$\overline{z}$-$\stackrel{∧}{b}$•$\overline{x}$=11.55-(-0.10)×35=15.05≈15,
即z关于x的回归方程是z=-0.10x+15;
(Ⅲ)∵z=2lny,
∴y=${e}^{\frac{z}{2}}$=${e}^{\frac{-0.10x+15}{2}}$,
∴年利润函数p=xy=x•${e}^{\frac{-0.10x+15}{2}}$,
求导得p′=${e}^{\frac{-0.10x+15}{2}}$(1-$\frac{0.10}{2}$x),
令p′=0,解得x=20;
∴当0<x<20时,P′>0,函数p是单调增函数,
当x>20时,P′<0,函数p是单调减函数,
∴当x=20时年利润函数p的值最大,
即利润为20元/kg时,年利润的预报值最大.

点评 本题考查了求线性回归方程的应用问题,也考查了导数的简单应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知点P(x,y)的坐标x,y满足约束条件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤3\\ x≥0,y≥0\end{array}\right.$,且A(1,-2),则$\overrightarrow{OP}•\overrightarrow{OA}$的取值范围为[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.
(Ⅰ)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(Ⅱ)这10名同学中男生和女生的国学素养测试成绩的方差分别为$s_1^2$,$s_2^2$,试比较$s_1^2$与$s_2^2$的大小(只需直接写出结果);
(Ⅲ)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项数列{an},前n项和为Sn,且有$\sqrt{{S}_{n}}$=λan+c.
(1)求证:λc≤$\frac{1}{4}$;
(2)若λ=1,c=0,求证:Sn≥($\frac{n+1}{2}$)2
(3)若2a2=a1+a3,求证:{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.从2,0,1,6四个数中随机取两个数组成一个两位数,并要求所取得较大的数为十位数字,较小的数为个位数字,则所组成的两位数是奇数的概率P=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某公司为确定明年投入某产品广告支出,对近5年的广告支出m与销售额t(单位:百万元)进行了初步统计,得到下列表格中的数据:
t3040p5070
m24568
经测算,年广告支出m和年销售额t满足线性回归方程$\widehat{t}$=6.5m+17.5,则p的值为60.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆x2+y2=25,求过点A(4,一3)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点F(1,0)是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,且椭圆C上的点到点F的最大距离为$\sqrt{2}+1$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l1:y=kx+m,l2:y=kx-m,若l1,l2均与椭圆C相切,试在x轴上确定一点M,使点M到l1,l2的距离之积恒为1.

查看答案和解析>>

同步练习册答案