分析 由圆$ρ=\frac{3}{2}$化为直角坐标方程:x2+y2=$\frac{9}{4}$,可得圆心O(0,0),半径r=$\frac{3}{2}$.直线$ρ(\sqrt{7}cosθ-sinθ)=\sqrt{2}$化为:$\sqrt{7}$x-y-$\sqrt{2}$=0.求出圆心O到直线的距离,即可得出d的最大值.
解答 解:由圆$ρ=\frac{3}{2}$化为直角坐标方程:x2+y2=$\frac{9}{4}$,可得圆心O(0,0),半径r=$\frac{3}{2}$.
直线$ρ(\sqrt{7}cosθ-sinθ)=\sqrt{2}$化为:$\sqrt{7}$x-y-$\sqrt{2}$=0.
圆心O到直线的距离$\frac{\sqrt{2}}{\sqrt{(\sqrt{7})^{2}+(-1)^{2}}}$=$\frac{1}{2}$.
∴d的最大值=$\frac{1}{2}$+r=2.
故答案为:2.
点评 本题考查了极坐标方程的应用、参数方程化为普通方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com