精英家教网 > 高中数学 > 题目详情

【题目】已知关于的方程的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则的取值范围(

A. B.

C. D.

【答案】C

【解析】令f(x)=x3+ax2+bx+c

∵抛物线的离心率为1,∴1是方程f(x)=x3+ax2+bx+c=0的一个实根∴a+b+c=﹣1

∴c=﹣1﹣a﹣b代入f(x)=x3+ax2+bx+c,

可得f(x)=x3+ax2+bx﹣1﹣a﹣b=(x﹣1)(x2+x+1)+a(x+1)(x﹣1)+b(x﹣1)=(x﹣1)

设g(x)=x2+(a+1)x+1+a+b,则g(x)=0的两根满足0<x1<1,x2>1

∴g(0)=1+a+b>0,g(1)=3+2a+b<0

作出可行域,如图所示

的几何意义是区域内的点与原点连线的斜率,∴故答案为:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a2=5,a6=21,记数列 的前n项和为Sn , 若 对n∈N+恒成立,则正整数m的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:

年份

2010

2011

2012

2013

2014

时间代号t

1

2

3

4

5

储蓄存款y(千亿元)

5

6

7

8

10


(1)求y关于t的回归方程
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的解析式满足
(1)求函数f(x)的解析式;
(2)当a=1时,试判断函数f(x)在区间(0,+∞)上的单调性,并加以证明;
(3)当a=1时,记函数 ,求函数g(x)在区间 上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣12x+4,x∈R.
(1)求f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数的图像在处的切线垂直于直线,求实数的值及直线的方程;

(2)求函数的单调区间;

(3)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点 的四个顶点构成的四边形面积为.

(1)求椭圆的方程;

(2)在椭圆上是否存在相异两点,使其满足:①直线与直线的斜率互为相反数;②线段的中点在轴上,若存在,求出的平分线与椭圆相交所得弦的弦长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx,g(x)=2x﹣1.
(1)当a=1时,若函数f(x)的图象恒在函数g(x)的图象上方,试求实数b 的取值范围;
(2)若y=f(x)对任意的x∈R均有f(x﹣2)=f(﹣x)成立,且f(x)的图象经过 点A(1, ).
①求函数y=f(x)的解析式;
②若对任意x<﹣3,都有2k <g(x)成立,试求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们休闲方式的一次调查中,共调查120人,其中女性70人、男性50人,女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)在犯错误的概率不超过0.10的前提下,认为休闲方式与性别是否有关?
参考数据:独立性检验临界值表

p(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2= ,n=a+b+c+d.

查看答案和解析>>

同步练习册答案