精英家教网 > 高中数学 > 题目详情
17.已知:$A_n^4=40C_n^5$,设$f(x)={(x-\frac{1}{{\root{3}{x}}})^n}$.
(1)求n的值;
(2)写出f(x)的展开式中所有的有理项;
(3)求f(x)的展开式中系数最大的项.

分析 (1)根据 $A_n^4=40C_n^5$,利用排列、组合数公式求得n的值.
(2)利用二项展开式的通项公式,求得f(x)的展开式中所有的有理项.
(3)利用二项式系数的性质以及展开式的通项公式,求得f(x)的展开式中系数最大的项.

解答 解:(1)∵$A_n^4=40C_n^5$,∴n(n-1)(n-2)(n-3)=40•$\frac{n(n-1)(n-2)(n-3)(n-4)}{5!}$,n=7.
(2)设$f(x)={(x-\frac{1}{{\root{3}{x}}})^n}$=${(x{-x}^{-\frac{1}{3}})}^{7}$,则它的通项公式为Tr+1=${C}_{7}^{r}$•(-1)r•${x}^{7-\frac{4r}{3}}$,
令7-$\frac{4r}{3}$为整数,可得r=0,3,6,
故f(x)的展开式中所有的有理项为T1=${C}_{7}^{0}$•x7,T4=-${C}_{7}^{3}$•x3,T7=${C}_{7}^{6}$•x-1
(3)求f(x)的展开式的通项公式为Tr+1=${C}_{7}^{r}$•(-1)r•${x}^{7-\frac{4r}{3}}$,则该项的系数为(-1)r•${C}_{7}^{r}$,
再根据二项式系数的性质可得当r=4时,系数最大为${C}_{7}^{4}$=35.

点评 本题主要考查排列、组合数公式的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若关于x的不等式$\sqrt{9-{x^2}}≤k(x+1)$的解集为区间[a,b],且b-a≥2,则实数k的取值范围为(  )
A.$[\sqrt{2},+∞)$B.$[\frac{{\sqrt{5}}}{3},+∞)$C.$(0,\sqrt{2}]$D.$(-∞,\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线y=x2上的点到直线2x-y-11=0距离的最小值是(  )
A.$\frac{{10\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$\frac{{12\sqrt{5}}}{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)化简$\frac{{\sqrt{1-2sin{{70}^0}cos{{70}^0}}}}{{cos{{70}^0}-\sqrt{1-{{cos}^2}{{70}^0}}}}$;
(2)证明:$\frac{tanxsinx}{tanx-sinx}=\frac{1+cosx}{sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为$3\sqrt{2}$的点共有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知双曲线C:2x2-y2=2,过点Q(1,1)能否作一条直线l,与双曲线交于A、B两点,且点Q为线段 AB的中点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC中,b2+c2-bc=a2,$\frac{a}{b}$=$\sqrt{3}$,则角C的值为(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知tanα=-2,则sinαcosα-cos2α的值是(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.-$\frac{5}{3}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{12}{13}$,α∈(0,$\frac{π}{2}$),α+β∈($\frac{π}{2}$,π),则cosβ=-$\frac{16}{65}$.

查看答案和解析>>

同步练习册答案