精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)若曲线和曲线有三个公共点,求以这三个点为顶点的三角形的面积.

【答案】(1),(2)16

【解析】分析: (Ⅰ)用参数方程与普通方程,极坐标方程与直角坐标方程互化的方法,可得曲线的普通方程和曲线的直角坐标方程;(Ⅱ)曲线和曲线都是关于轴对称的图形,它们有三个公共点,所以原点的它们其中的一个公共点,从而可确定,进而得到三角形的面积.

详解: (Ⅰ)曲线 为参数),消去参数,得曲线的普通方程为:

曲线 ,即,化为直角坐标方程为

(Ⅱ)因为曲线和曲线都是关于轴对称的图形,它们有三个公共点,所以原点的它们其中的一个公共点,将原点代入中得:(舍去),此时,曲线方程为,曲线和曲线的三个交点坐标为,易得这三个点为顶点的三角形的面积为

点睛: 参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式 等可以把极坐标方程与直角坐标方程互化,本题这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列结论正确的是(

A.各个面都是三角形的几何体是三棱锥

B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥

C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥

D.圆锥的顶点与底面圆周上的任意一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象部门提供了某地区今年六月分(30天)的日最高气温的统计表如下:

日最高气温t(单位:

天数

6

12

由于工作疏忽,统计表被墨水污染,数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于的频率为0.9.

(1)若把频率看作概率,求的值;

(2)把日最高气温高干称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此推测是否有95%的把握认为本地区“高温天气”与西瓜“旺销”有关?说明理由.

高温天气

非高温天气

合计

旺销

1

不旺销

6

合计

P(K2≥R)

0.10

0.050

0.025

0.010

0.005

0.001

K

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则此几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且,若函数6 个零点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两班本次考试数学分数如下列茎叶图所示:

(I)根据基叶图求甲、乙两班同学数学分数的中位数,并将乙班同学的分数的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较在一模考试中,甲、乙两班同学数学分数的平均水平和分数的分散程度(不要求计算出具体值,给出结论即可)

(Ⅲ)若规定分数在的成绩为良好,分数在的成绩为优秀,现从甲、乙两班成绩为优秀的同学中,按照各班成绩为优秀的同学人数占两班总的优秀人数的比例分层抽样,共选出12位同学参加数学提优培训,求这12位同学中恰含甲、乙两班所有140分以上的同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的顶点坐标分别是A7,﹣3),B2,﹣8),C51),

1)求AB垂直平分线的方程(化为一般式);

2)求ABC外接圆的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)设数列{an}是公比为正数的等比数列,a1=2a3﹣a2=12

1)求数列{an}的通项公式;

2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:

分组

频数

频率

[0,1)

10

0.10

[1,2)


0.20

[2,3)

30

0.30

[3,4)

20


[4,5)

10

0.10

[5,6]

10

0.10

合计

100

1.00

1)求右表中的值;

2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.

查看答案和解析>>

同步练习册答案