精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义域为R的偶函数,且f(x+1)=
1
f(x)
,若f(x)在[-1,0]上是减函数,那么f(x)在[2,3]上是(  )
A、增函数
B、减函数
C、先增后减得函数
D、先减后增的函数
分析:由偶函数的性质可以得出[0,1]上的单调性,再由f(x+1)=
1
f(x)
可得出函数的周期是2,由此两个性质即可研究出函数在[2,3]上的单调性.
解答:解:由题意f(x+1)=
1
f(x)
,故有f(x+1)=
1
f(x)
= f(x-1)
所以函数的周期是2
又函数f(x)是定义域为R的偶函数且在[-1,0]上是减函数,故在[0,1]上增
由上性质知,f(x)在[2,3]上的单调性与在[0,1]上的单调性相同,故f(x)在[2,3]上是增函数.
故选A
点评:本题考查函数的奇偶性与单调性的综合,此类题是函数性质考查中的一个比较重要的类型,求解本题的关键是正确理解函数的性质并能熟练运用这些性质做出判断,本题根据恒等式得出函数的周期性是对函数周期性考查的一种比较新颖的方法.本题易因对恒等式理解不透未能得出周期而导致解题失败.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案