精英家教网 > 高中数学 > 题目详情
8.已知$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,其夹角为60°,则(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{b}$=(  )
A.-2B.-1C.0D.1

分析 利用向量的运算化简得出∴(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{b}$=2$\overrightarrow{a}$$•\overrightarrow{b}$$-3\overrightarrow{b}$2,求解数量积,向量的模即可.

解答 解;$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,其夹角为60°,
∴|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$$•\overrightarrow{b}$=$1×1×\frac{1}{2}$=$\frac{1}{2}$,
∴(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•$\overrightarrow{b}$=2$\overrightarrow{a}$$•\overrightarrow{b}$$-3\overrightarrow{b}$2=2×$\frac{1}{2}-3×1$=1-3=-2,
故选:A

点评 本题考查了平面向量的运算,数量积的运用,属于计算题,难度不大,关键是准确化简求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x+4},x≤4}\\{-lo{g}_{2}(x+1),x>4}\end{array}\right.$,若f(a)=$\frac{1}{8}$.求f[f(a+6)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某市高二理科学生数学考试的成绩x服从正态分布,其密度函数为f(x)=$\frac{1}{\sqrt{2π}σ}$e${\;}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}$,密度曲线如图,已知该市理科学生总数是10000人,则成绩位于(65,85]的人数约是9544.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}$sin2(x+$\frac{π}{4}$)-cos2x-$\frac{1+\sqrt{3}}{2}$(x∈R),求函数f(x)的最小值和最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某次语文考试中考生的分数X~N(80,100),则分数在60-100分的考生占总考生数的百分数为(  )
A.68.26%B.95.44%C.99.74%D.31.74%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队取胜乙队的概率为0.6,本场比赛采用五局三胜,即先胜三局的队获胜,比赛结束,设各局比赛相互没有影响.求:
(1)甲队3:0获胜的概率;
(2)设本场比赛结束所需的比赛局数为ξ,求随机变量ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2$\sqrt{3}$cos($\frac{π}{2}$-x)cosx-sin2x+cos2x(x∈R).
(1)求函数f(x)的最小正周期及单调递增区间;
(2)若f(x0)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$和$\overrightarrow{b}$的夹角为120°,且$\overrightarrow{m}$=$\frac{2\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$,$\overrightarrow{n}$=-$\frac{3\overrightarrow{a}}{|\overrightarrow{a}|}$+$\frac{2\overrightarrow{b}}{|\overrightarrow{b}|}$,求$\overrightarrow{m}$与$\overrightarrow{n}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tanθ=2,则$\frac{sinθ}{si{n}^{3}θ+co{s}^{3}θ}$=(  )
A.$\frac{10}{9}$B.$\frac{9}{7}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

同步练习册答案