精英家教网 > 高中数学 > 题目详情
11.设集合A={x|$\frac{2x-a}{x+1}$≥0},且-2∉A,则实数a的取值范围是a<-4.

分析 若-2∈A,从而可得$\frac{-2×2-a}{-2+1}$≥0,从而解-2∉A即可.

解答 解:若-2∈A,
则$\frac{-2×2-a}{-2+1}$≥0,
则4+a≥0,
故a≥-4,
故-2∉A时,a<-4;
故答案为:a<-4.

点评 本题考查了元素与集合的关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.全体四位数中,各位数字顺次增大或顺次缩小的共有336个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.化简(1-a)$\root{4}{\frac{1}{(a-1)^{3}}}$的结果是(  )
A.$\root{4}{a-1}$B.-$\root{4}{a-1}$C.$\root{4}{1-a}$D.-$\root{4}{1-a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个顶点为A(3,2),B(1,5),C(2,9),设三边AB,BC,CA所在直线的斜率分别为k1,k2,k3,试比较k1,k2,k3的大小并判断三边所在直线的倾斜角是锐角还是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={-2≤x≤3},B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求m的取值集合;
(2)若A⊆B,求m的取值集合;
(3)是否存在实数m,使得A=B?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若x,y>0且x+y>2,则$\frac{1+y}{x}$和$\frac{1+x}{y}$的值满足(  )
A.$\frac{1+y}{x}$和$\frac{1+x}{y}$中至少有一个小于2B.$\frac{1+y}{x}$和$\frac{1+x}{y}$都等于2
C.$\frac{1+y}{x}$和$\frac{1+x}{y}$都大于2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足n2an=(n2-1)an-1(n≥2,n∈N*),a1=2,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点P坐标为(sinα-cosα,sinα+cosα),当α∈(0,2π)时,P在第二象限,则α取值范围为(  )
A.(-$\frac{π}{4}$,$\frac{π}{4}$)B.(0,$\frac{π}{4}$)∪($\frac{7π}{4}$,2π)C.(0,$\frac{π}{4}$)∪($\frac{5π}{4}$,$\frac{7π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={(x,y)|y=2x-1,∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B=∅.

查看答案和解析>>

同步练习册答案