精英家教网 > 高中数学 > 题目详情
17.计算:$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$.

分析 直接利用根式以及有理指数幂的运算法则化简求解即可.

解答 解:$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$
=$\frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)}$-1-($\sqrt{5}-2$)
=$\sqrt{5}-2$$-1-\sqrt{5}+2$
=-1.

点评 本题考查根式以及有理指数幂的运算,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.将编号为1,2,3,4的4个小球随机放到A、B、C三个不同的小盒中,每个小盒至少放一个小球.
(Ⅰ)求编号为1,2的小球同时放到A盒的概率;
(Ⅱ)设随机变量ξ为放入A盒的小球的个数,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinα+sinβ=a,cosα+cosβ=b,且ab≠0,求tan$\frac{α}{2}$+tan$\frac{β}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲办理了1万元的定活两便储蓄,利息按2.25%再打六折;乙同时办理了1万元的一年定期储蓄,利率2.25%,一年后两人同时取出,甲比乙少得利息多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=cos2α-asinα+b,且-4≤y≤0,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xlnx-x+$\frac{1}{2}$x2-$\frac{1}{3}$ax3,f(x)为函数f(x)的导函数.
(l)若F(x)=f(x)+b,函数F(x)在x=1处的切线方程为2x+y-1=0,求a、b的值;
(2)若f′(x)≤-x+ax恒成立,求实数a的取值范围;
(3)若曲线y=f(x)上存在两条倾斜角为锐角且互相平行的切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}的前n项和为Sn,且满足an+1+an=3n-54(n∈N*
(1)若a1=-20,求数列{an}的通项公式;
(2)求证:当a1>-27时,存在自然数m,使得当n=m时,Sn与|an+1+an|都取得最小值,并求出此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等差数列{an}中,a2+a12=30,那么前13项的和为195.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|-3<x<1},N={x|x≤-3},则集合{x|x≥1}=(  )
A.M∩NB.M∪NC.R(M∩N)D.R(M∪N)

查看答案和解析>>

同步练习册答案