| A. | b<a<c | B. | c<a<b | C. | a<b<c | D. | b<c<a |
分析 由题意可得函数y=f(x)为周期为4的函数,从而可得c=f($\frac{41}{4}$)=f($\frac{9}{4}$)=f($\frac{7}{4}$),b=f($\frac{19}{2}$)=f($\frac{3}{2}$),利用函数y=f(x+2)是偶函数,可得a=f(-5)=f(3)=f(1),利用单调性即可求解.
解答 解:∵对于任意的x∈R,都有f(x+2)=-$\frac{1}{f(x)}$,
∴f(x+4)=f(x),故函数y=f(x)为周期为4的函数.
∴b=f($\frac{19}{2}$)=f($\frac{3}{2}$),
∵函数y=f(x+2)是偶函数
∴f(-x+2)=f(x+2),
∴a=f(-5)=f(3)=f(1),
c=f($\frac{41}{4}$)=f($\frac{9}{4}$)=f($\frac{7}{4}$),
∵当x∈(0,2]时,f(x)=ex-x是增函数,1<$\frac{3}{2}$<$\frac{7}{4}$,
∴a<b<c.
故答案选:C.
点评 本题主要考查函数值的计算,根据函数奇偶性和周期性进行转化是解决本题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | (-1,1) | C. | ∅ | D. | (-1,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 几何题 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{16}$ | B. | $\frac{9}{16}$ | C. | $\frac{1}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com