精英家教网 > 高中数学 > 题目详情
11.已知集合A={x|x2-x-2<0},B={x|x≤1,或x≥2},则A∩B=(  )
A.[-1,2]B.(-1,1)C.D.(-1,1]

分析 分别求出关于A、B中的x的元素,从而求出其交集即可.

解答 解:∵A={x|x2-x-2<0}={x|-1<x<2},
B={x|x≤1,或x≥2},
则A∩B=(-1,1],
故选:D.

点评 本题考查了集合的运算,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$的图象向右平移$\frac{π}{6}$个单位后关于原点对称,则函数f(x)=sin(2x+φ)在[0,$\frac{π}{4}$]上的最小值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,(a>b>0),一直线2x+y+1=0与椭圆相交于A、B两点,且线段AB中点为M,若kOM=$\frac{1}{4}$(O为坐标原点),
(1)求此椭圆的离心率;
(2)若椭圆的右焦点关于直线x=1的对称点在圆:x2+y2=9上,求此椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{2{e^x}}}{x}$
(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax-y=0,求x0的值;
(2)设函数F(x)=$\frac{1}{2}$f(x)-bx,其中b为实常数,试讨论函数F(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-2n.
(1)设bn=an+2,求证:数列{bn}是等比数列,并求出{an}的通项公式.
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:函数y=log0.5(x2+x+a)的定义域为R,命题q:关于x的不等式x2-2ax+1≤0在R上有解.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=-$\frac{1}{f(x)}$;②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex-x,设a=f(-5),b=f($\frac{19}{2}$),c=f($\frac{41}{4}$),则a,b,c的大小关系是(  )
A.b<a<cB.c<a<bC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}1-{2^x},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}$,则f[f(-1)]等于(  )
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(sinx)的定义域为[-$\frac{π}{3}$$,\frac{5π}{6}$],则函数f(cosx)的定义域为[$-\frac{5π}{6}+2kπ$,$\frac{5π}{6}+2kπ$],k∈Z.

查看答案和解析>>

同步练习册答案