精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\left\{\begin{array}{l}1-{2^x},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}$,则f[f(-1)]等于(  )
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

分析 直接利用分段函数由里及外逐步求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}1-{2^x},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}$,则f[f(-1)]=f[1-2-1]=f($\frac{1}{2}$)=$(\frac{1}{2})^{\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.
故选:D.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{1}{3}$x3-ax2+bx的图象与直线3x+3y-8=0相切于点(2,f(2)).
(1)求a,b的值;
(2)求函数f(x)区间[-2,2]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-x-2<0},B={x|x≤1,或x≥2},则A∩B=(  )
A.[-1,2]B.(-1,1)C.D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知命题p:函数f(x)=logax(a>0,且a≠1)在区间(0,+∞)上单调递增,命题q:函数f(x)=ax2-ax+1对于任意x∈R都有f(x)>0恒成立.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是[0,1]∪[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线y=-x+b与曲线x=$\sqrt{1-{y^2}}$恰有一个公共点,则b的取值范围是$-1≤b<1或b=\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈Z,“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个不透明的袋子装有4个完全相同的小球,球上分别标有数字为0,1,2,2,现甲从中摸出一个球后便放回,乙再从中摸出一个球,若摸出的球上数字大即获胜(若数字相同则为平局),则在甲获胜的条件下,乙摸1号球的概率为(  )
A.$\frac{5}{16}$B.$\frac{9}{16}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{e}$为平面向量,若|$\overrightarrow{e}$|=1,$\overrightarrow{a}$•$\overrightarrow{e}$=1,$\overrightarrow{b}$•$\overrightarrow{e}$=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为3,$\overrightarrow{a}$•$\overrightarrow{b}$的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在各项均为正数的等比数列{an}中,若2a4+a3-2a2-a1=8,则2a5+a4的最小值为(  )
A.12B.$12\sqrt{2}$C.$12\sqrt{3}$D.$16\sqrt{3}$

查看答案和解析>>

同步练习册答案