精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数).
(1)求函数f(x)的最小值;
(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值;
(3)在(2)的条件下,证明:数学公式

(1)解:由题意a>0,f′(x)=ex-a,
由f′(x)=ex-a=0得x=lna.
当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0.
∴f(x)在(-∞,lna)单调递减,在(lna,+∞)单调递增.
即f(x)在x=lna处取得极小值,且为最小值,其最小值为f(lna)=elna-alna-1=a-alna-1.(5分)
(2)解:f(x)≥0对任意的x∈R恒成立,即在x∈R上,f(x)min≥0.
由(1),设g(a)=a-alna-1,所以g(a)≥0.
由g′(a)=1-lna-1=-lna=0得a=1.
∴g(a)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
∴g(a)在a=1处取得最大值,而g(1)=0.
因此g(a)≥0的解为a=1,∴a=1.(9分)
(3)证明:由(2)知,对任意实数x均有ex-x-1≥0,即1+x≤ex
(n∈N*,k=0,1,2,3,…,n-1),则


=.(14分)
分析:(1)求导函数,确定函数的单调性,从而可得f(x)在x=lna处取得极小值,且为最小值;
(2)f(x)≥0对任意的x∈R恒成立,即在x∈R上,f(x)min≥0.由(1),构造函数g(a)=a-alna-1,所以g(a)≥0,确定函数的单调性,即可求得实数a的值;
(3)由(2)知,对任意实数x均有ex-x-1≥0,即1+x≤ex,令(n∈N*,k=0,1,2,3,…,n-1),可得,从而有,由此即可证得结论.
点评:本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,同时考查不等式的证明,解题的关键是正确求导数,确定函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案