精英家教网 > 高中数学 > 题目详情
已知f(x)=
sin(x-3π)•cos(2π-x)•sin(-x+
2
)
cos(-x-π)•cos(
π
2
-x)

(1)若x是第三象限的角,且sin(-x-π)=-
4
5
,求f(x)的值.
(2)求函数y=2f2(x)+f(
π
2
+x)+1
的值域.
分析:(1)根据诱导公式化简,得f(x)=-cosx.再由sin(-x-π)=-
4
5
得sinx=-
4
5
,利用同角三角函数的关系结合x是第三象限的角,算出f(x)=-cosx=
3
5

(1)由f(x)表达式,结合诱导公式与同角三角函数的平方关系化简,得y=2f2(x)+f(
π
2
+x)+1
═-2(sinx-
1
4
2+
25
8
,再由二次函数的单调性结合sinx∈[-1,1],即可算出所求函数的值域.
解答:解:根据题意,得
f(x)=
sin(x-3π)•cos(2π-x)•sin(-x+
2
)
cos(-x-π)•cos(
π
2
-x)

=
-sinx•cosx•sin(-x-
π
2
)
-cosx•sinx
=sin(-x-
π
2
)=-sin(
π
2
-x)=-cosx
(1)∵x是第三象限的角,且sin(-x-π)=-
4
5

∴sinx=-
4
5
,可得cosx=-
1-sin2x
=-
3
5

由此可得f(x)=-cosx=
3
5

(2)函数y=2f2(x)+f(
π
2
+x)+1
=2cos2x-cos(
π
2
+x
)+1
即y=2cos2x+sinx+1=-2(sinx-
1
4
2+
25
8

∵sinx∈[-1,1],
∴当sinx=
1
4
时,函数的最大值为
25
8
;当sinx=-1时,函数的最小值为0
因此,函数y=2f2(x)+f(
π
2
+x)+1
的值域为[0,
25
8
]
点评:本题题将一个三角函数式化简,求特殊函数值并求另一函数的值域.着重考查了诱导公式、同角三角函数的基本关系与二次函数的图象与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=sin(2x-
π
6
)-2m
x∈[0,
π
2
]
上有两个零点,则m的取值范围为(  )
A、(
1
4
1
2
)
B、[
1
4
1
2
]
C、[
1
4
1
2
D、(
1
4
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,则下列结论中正确的是(  )
A、函数y=f(x)•g(x)的周期为2
B、函数y=f(x)•g(x)的最大值为1
C、将f(x)的图象向左平移
π
2
个单位后得到g(x)的图象
D、将f(x)的图象向右平移
π
2
个单位后得到g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sinπx(x≥0)
f(x+1)-1(x<0)
,若f(-
5
6
)+f(m)=-1
,且1<m<2,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin[
π
3
(x+1)]-
3
cos[
π
3
(x+1)]
,则f(1)+f(2)+…+f(2011)+f(2012)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(2x+
π
6
)+cos(2x-
π
3
)

(Ⅰ)求f(x)的最大值及取得最大值时x的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若f(C)=1,c=2
3
,sinA=2sinB,求△ABC的面积.

查看答案和解析>>

同步练习册答案