精英家教网 > 高中数学 > 题目详情
11.在△ABC中,角A,B,C所对的边分别为a,b,c,A=$\frac{π}{4}$,sinA+sin(B-C)=2$\sqrt{2}$sin2C且△ABC的面积为1,则
BC边的长为$\sqrt{5}$.

分析 由sinA+sin(B-C)=2$\sqrt{2}$sin2C,利用和差公式、倍角公式展开可得sinB=2$\sqrt{2}$sinC,利用正弦定理可得b=2$\sqrt{2}$c.再利用余弦定理与三角形面积计算公式即可得出.

解答 解:在△ABC中,∵sinA+sin(B-C)=2$\sqrt{2}$sin2C,
∴sinBcosC+cosBsinC+sinBcosC-cosBsinC=2$\sqrt{2}$sin2C,
∴2sinBcosC=4$\sqrt{2}$sinCcosC
∵cosC≠0,
∴sinB=2$\sqrt{2}$sinC,
∴b=2$\sqrt{2}$c.
∵A=$\frac{π}{4}$,
∴由余弦定理可得:a2=(2$\sqrt{2}$c)2+c2-2×2$\sqrt{2}$c2cos$\frac{π}{4}$=5c2
∵△ABC的面积为1,
∴$\frac{1}{2}$bcsinA=1,
∴$\frac{1}{2}$×2$\sqrt{2}$×sin$\frac{π}{4}$=1,解得c2=1.
则a=$\sqrt{5}$.
故答案为:$\sqrt{5}$

点评 本题考查了正弦定理、余弦定理、和差公式、倍角公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.动点P满足$\sqrt{(x-2)^{2}+{y}^{2}}$+$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$=2$\sqrt{3}$
(1)求动点P的轨迹F1,F2的方程;
(2)设直线l与曲线C交于A,B两点,坐标原点O到直线l的距离为$\frac{\sqrt{3}}{2}$,求△OAB面 积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔15000 m,速度为1000 km/h,飞行员先看到山顶的俯角为15°,经过108s后又看到山顶的俯角为75°,则山顶的海拔高度为15-10$\sqrt{3}$km.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在我国古代著名的数学专著《九章算术》里有-段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里:驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:需9日相逢.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某市为评选“全国卫生城市”,从200名志愿者中随机抽取40名志愿者参加街道卫生监督活动,经过统计这些志愿者的年龄介于25岁和55岁之间,为方便安排任务,将所有志愿者按年龄从小到大分成六组,依次为[25,30),[30,35),[35,40),[40,45),[45,50),[50,55],如图是按照上述分组方法得到的频率分布直方图的一部分,已知第四组[40,45)的人数为4人.
(1)求第五组的频率并估计200名志愿者中年龄在40岁以上(含40岁)的人数;
(2)若从年龄位于第四组和第六组的志愿者中随机抽取两名,记他们的年龄分别为x,y,事件E={|x-y|≤5},求P(E).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x∈R,ax2+2x+3>0.若命题p为假命题,则实数a的取值范围是(  )
A.{a|a<$\frac{1}{3}$}B.{a|0<a≤$\frac{1}{3}$}C.{a|a≤$\frac{1}{3}$}D.{a|a≥$\frac{1}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合$A=\left\{{y\left|{y={x^{\frac{1}{3}}}}\right.}\right\},B=\left\{{x\left|{y=ln({x-1})}\right.}\right\}$,则A∩B=(  )
A.[1,+∞)B.(0,1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.定义在R上的函数f(x)的导函数为f'(x),满足xf'(x)+f(x)>x,则不等式$({x-4})f({x-4})-4f(4)<\frac{x^2}{2}-4x$的解集为(-∞,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn为数列{an}的前n项和,则$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值为(  )
A.4B.3C.2$\sqrt{3}$-2D.2

查看答案和解析>>

同步练习册答案