分析 由sinA+sin(B-C)=2$\sqrt{2}$sin2C,利用和差公式、倍角公式展开可得sinB=2$\sqrt{2}$sinC,利用正弦定理可得b=2$\sqrt{2}$c.再利用余弦定理与三角形面积计算公式即可得出.
解答 解:在△ABC中,∵sinA+sin(B-C)=2$\sqrt{2}$sin2C,
∴sinBcosC+cosBsinC+sinBcosC-cosBsinC=2$\sqrt{2}$sin2C,
∴2sinBcosC=4$\sqrt{2}$sinCcosC
∵cosC≠0,
∴sinB=2$\sqrt{2}$sinC,
∴b=2$\sqrt{2}$c.
∵A=$\frac{π}{4}$,
∴由余弦定理可得:a2=(2$\sqrt{2}$c)2+c2-2×2$\sqrt{2}$c2cos$\frac{π}{4}$=5c2.
∵△ABC的面积为1,
∴$\frac{1}{2}$bcsinA=1,
∴$\frac{1}{2}$×2$\sqrt{2}$×sin$\frac{π}{4}$=1,解得c2=1.
则a=$\sqrt{5}$.
故答案为:$\sqrt{5}$
点评 本题考查了正弦定理、余弦定理、和差公式、倍角公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {a|a<$\frac{1}{3}$} | B. | {a|0<a≤$\frac{1}{3}$} | C. | {a|a≤$\frac{1}{3}$} | D. | {a|a≥$\frac{1}{3}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2$\sqrt{3}$-2 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com