精英家教网 > 高中数学 > 题目详情
2.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔15000 m,速度为1000 km/h,飞行员先看到山顶的俯角为15°,经过108s后又看到山顶的俯角为75°,则山顶的海拔高度为15-10$\sqrt{3}$km.

分析 先求AB的长,在△ABC中,可求BC的长,进而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山顶的海拔高度.

解答 解:如图,∠A=15°,∠ACB=60°,
AB=1000×108×$\frac{1}{3600}$=30(km )
∴在△ABC中,BC=20$\sqrt{3}$sin15°
∵CD⊥AD,
∴CD=BCsin∠CBD=BC×sin75°=20$\sqrt{3}$sin15°sin75°=10$\sqrt{3}$
山顶的海拔高度=(15-10$\sqrt{3}$)km.
故答案为15-10$\sqrt{3}$.

点评 本题以实际问题为载体,考查正弦定理的运用,关键是理解俯角的概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知命题p1:函数y=ex-e-x在R为增函数,p2:函数y=ex+e-x在(0,1)为减函数.则命题p1∧p2;p1∨p2;p1∧¬p2;¬p1∨p2中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱柱ABC-A1B1C1中侧棱垂直于底面,AC⊥BC,点D是AB的中点.求证:
(Ⅰ) AC⊥BC1
(Ⅱ) AC1∥平面 B1CD;
(Ⅲ)若 AC=BC=1,AA1=2,求三棱锥DB1BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“?x>0,$\frac{x-2}{x}$≥0”的否定是(  )
A.?x≤0,$\frac{x-2}{x}$<0B.?x>0,$\frac{x-2}{x}$<0C.?x>0,0≤x<2D.?x>0,0<x<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆x2+y2=1和圆外一点P(1,2),过点P作圆的切线,则切线方程为x=1或3x-4y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x),下列说法错误的是(  )
A.△y=f(x0+△x)-f(x0)叫函数值的改变量
B.$\frac{△y}{△x}$=$\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$叫该函数在[x0,x0+△x]上的平均变化率
C.f(x)在点x0处的导数记为y′
D.f(x)在点x0处的导数记为f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.孝感某地施行禁鞭政策,现有A.B两监控点相距1000米,A处听到炮竹声与B处相差2秒,设声速为300米/秒,现要找出炮竹燃放点的大概位置,以A,B所在的直线为x轴,以线段AB的中垂线为y轴建立直角坐标系,燃放点的轨迹方程为$\frac{{x}^{2}}{30{0}^{2}}-\frac{{y}^{2}}{40{0}^{2}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,A=$\frac{π}{4}$,sinA+sin(B-C)=2$\sqrt{2}$sin2C且△ABC的面积为1,则
BC边的长为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足:$\left\{{\begin{array}{l}{y≥2x-2}\\{y≥-x+1}\\{y≤x+1}\end{array}}\right.$,则z=3x-y的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案