精英家教网 > 高中数学 > 题目详情
已知四棱锥,底面为矩形,侧棱,其中为侧棱上的两个三等分点,如下图所示.
(1)求证:
(2)求异面直线所成角的余弦值;
(3)求二面角的余弦值.
 
(1)详见解析;(2);(3)

试题分析:(1)利用底面矩形的对角线互相平分产生一个AC的中点,从而构造出了△ANC的中位线,利用线线平行得到了线面平行;(2)此题利用传统平移的做法求异面直线的夹角略显繁琐,故可利用条件中PA⊥平面ABCD产生空间直角坐标系,利用空间向量求线线角;(3)同(2),传统做出二面角的平面角的方法比较繁琐,利用已经建好的坐标系求出法向量,进而可以得到二面角的余弦值.
(1)证明:连结AC交BD于O,连结OM,
∵底面ABCD为矩形,∴O为AC中点,∵M、N为侧棱PC的三等份点,∴CM=CN,
∴OM//AN, ∵OM平面MBD,AN平面MBD,∴AN//平面MBD  4分.
(2)如图所示,以A为原点,建立空间直角坐标系A-xyz,

则A(0,0,0),B(3,0,0),C(3,6,0),D(0,6,0),P(0,0,3),M(2,4,1),N(1,2,2),
,  ,  
异面直线AN与PD所成角的余弦值为         8分
(3)∵侧棱PA垂直底面ABCD,∴平面BCD的一个法向量为=(0,0,3),           
设平面MBD的法向量为m=(x,y,z),,并且,
,令y-1得x=2,z=-2,
∴平面MBD的一个法向量为m=(2,1,-2),,   12分
由图可知二面角M-BD-C的大小是锐角,
∴二面角M-BD-C大小的余弦值为      12分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.
(1)证明:AC1⊥A1B;
(2)设直线AA1与平面BCC1B1的距离为,求二面角A1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在平行四边形中,.将沿折起,使得平面平面,如图.

(1)求证:
(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是平行四边形,,设中点,点在线段上且
(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面
(Ⅰ)若分别为中点,求证:∥平面
(Ⅱ)求证:
(Ⅲ)若,求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方体ABCD-A1B1C1D1,M为AA1的中点,N为A1B1上的点,且满足A1N=NB1,P为底面正方形A1B1C1D1的中心.求证:MN⊥MC,MP⊥B1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是不重合的两条直线,是不重合的两个平面.下列命题:①若,则; ②若,则;③若,则;④若,则.其中所有真命题的序号是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线,是两个不同的平面.则下列命题中正确的是(    )
A.m⊥,n,m⊥nB.=m,n⊥mn⊥
C.,m⊥,n∥m⊥nD.,m⊥,n∥m⊥n

查看答案和解析>>

同步练习册答案