精英家教网 > 高中数学 > 题目详情
11.已知cosα>cosβ,那么下列结论成立的是(  )
A.若α、β是第一象限角,则sinα>sinβB.若α、β是第二象限角,则tanα>tanβ
C.若α、β是第三象限角,则sinα>sinβD.若α、β是第四象限角,则tanα>tanβ

分析 由于题中条件没有给出角度的范围,不妨均假定0≤α,β≤2π,结合三角函数的单调性加以解决.

解答 解:若α、β同属于第一象限,cosα>cosβ,则2kπ<α<β<2kπ+$\frac{π}{2}$,sinα<sinβ;故A错.
若α、β是第二象限角,cosα>cosβ,则2kπ+$\frac{π}{2}$<α<β<π+2kπ,tanα<tanβ;故B错.
α、β是第三象限角,cosα>cosβ,则2kπ+π<β<α<2kπ+$\frac{3π}{2}$,sinα<sinβ;故C错.
若α、β是第四象限角,cosα>cosβ,则$\frac{3π}{2}$<β<α<2π,
tanα>tanβ.(均假定α,β在同一个周期内.)故D正确.
故选:D.

点评 本题考查三角函数的性质,三角函数的性质是三角部分的核心,主要指:函数的定义域、值域,函数的单调性、对称性、奇偶性和周期性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x2-16<0},B={x|x2-4x-5≥0}.
( I)求A∩B,A∪B;
( II)求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用长为36m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow m=({{{log}_{\frac{1}{3}}}x,1-f(x)})$,$\overrightarrow n=({1,2+{{log}_3}x})$,且向量$\overrightarrow m$∥$\overrightarrow n$.
(Ⅰ)求函数y=f(x)的解析式及函数$y=f(cos(2x-\frac{π}{3}))$的定义域;
(Ⅱ)若函数g(θ)=-cos2θ-asinθ+2,存在a∈R,对任意${x_1}∈[{\frac{1}{27},3}]$,总存在唯一${θ_0}∈[{-\frac{π}{2},\frac{π}{2}}]$,使得f(x1)=g(θ0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若ABCD为平行四边形ABCD,E是CD中点,且$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b$,则$\overrightarrow{AE}$=(  )
A.$\frac{1}{2}\overrightarrow a+\overrightarrow b$B.-$\frac{1}{2}\overrightarrow a+\overrightarrow b$C.$\overrightarrow a+\frac{1}{2}\overrightarrow b$D.$\overrightarrow a-\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程y=bx+a,那么下列说法中不正确的是(  )
A.直线y=bx+a必经过点$(\overline x,\overline y)$
B.直线y=bx+a至少经过(x1,y1),(x2,y2),…,(xn,yn)中的一个点
C.直线y=bx+a的纵截距为$\overline y-b\overline x$
D.直线y=bx+a的斜率为$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果α的终边过点(2sin30°,-2cos30°),那么sinα=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等比数列a1+a4=18,a2a3=32,则公比q的值为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{2}$或2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.奇台一中高一年级数学老师这学期分别用A、B两种不同的教学方式试验甲、乙两个班(人数均为60人,入学时数学平均分数和优秀率都相同,勤奋程度和自觉性都一样).现随机收取甲、乙两班各20名学生的数学期末考试成绩,得到茎叶图:

学校规定:成绩不低于85分的为优秀.
请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
甲班乙班合计
优秀
不优秀
合计
下面临界值表仅供参考:

P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案