精英家教网 > 高中数学 > 题目详情

【题目】如图,菱形ABCD的边长为a,∠D60°,点HDC边中点,现以线段AH为折痕将DAH折起使得点D到达点P的位置且平面PHA⊥平面ABCH,点EF分别为ABAP的中点.

1)求证:平面PBC∥平面EFH

2)若三棱锥PEFH的体积等于,求a的值.

【答案】1)见解析;(2a2

【解析】

1)分别证明EH∥平面PBCEF∥平面PBC,再由EFEHE,即可证明结论;

2)根据条件求出AHDHPHCH,然后证明PH⊥平面ABCH,又点FAP的中点,则SPEFSAEF,故VHPEFVHAEF,则,据此计算求解即可.

1)证明:菱形ABCD中,∵EH分别为ABCD的中点,∴BECHBECH

∴四边形BCHE为平行四边形,则BCEH,又EH平面PBC,∴EH∥平面PBC

又点EF分别为ABAP的中点,则EFBP,又EF平面PBC,∴EF∥平面PBC

EFEHE,∴平面EFH∥平面PBC

2)在菱形ABCD中,∠D60°,则ACD为正三角形,

AHCDAHDHPHCH

折叠后,PHAH,又平面PHA⊥平面ABCH,平面PHA平面ABCHAH,从而PH⊥平面ABCH

在△PAE中,点FAP的中点,则SPEFSAEF,∴VHPEFVHAEF

VHPEF+VHAEFVHPAE

a38,即a2.故a2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知BD为圆锥AO底面的直径,若C是圆锥底面所在平面内一点,,且AC与圆锥底面所成角的正弦值为.

(1)求证:平面平面ACD

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂每日生产某种产品吨,当日生产的产品当日销售完毕,当时,每日的销售额(单位:万元)与当日的产量满足,当日产量超过20吨时,销售额只能保持日产量20吨时的状况.已知日产量为2吨时销售额为4.5万元,日产量为4吨时销售额为8万元.

1)把每日销售额表示为日产量的函数;

2)若每日的生产成本(单位:万元),当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.

(注:计算时取

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8.

有时可用函数

描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.

1) 证明:当时,掌握程度的增加量总是下降;

2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,,

.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,点EFG分别为棱A1D1A1AA1B1的中点,给出下列四个命题:①EFB1C;②BC1∥平面EFG;③A1C⊥平面EFG;④异面直线FGB1C所成角的大小为.其中正确命题的序号为(  

A.①②B.②③C.①②③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秉承提升学生核心素养的理念,学校开设以提升学生跨文化素养为核心的多元文化融合课程.选某艺术课程的学生唱歌、跳舞至少会一项,已知会唱歌的有人,会跳舞的有人,现从中选人,设为选出的人中既会唱歌又会跳舞的人数,且

(1)求选该艺术课程的学生人数;

(2)写出的概率分布列并计算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7届世界军人运动会于20191018日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:

组别

频数

5

30

40

50

45

20

10

1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.

(参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学学校对高三年级文科学生进行了一次自主学习习惯的自评满意度的调查,按系统抽样方法得到了一个自评满意度(百分制,单位:分)的样本,如图分别是该样本数据的茎叶图和频率分布直方图(都有部分缺失).

1)完善频率分布直方图(需写出计算过程);

2)分别根据茎叶图和频率分布直方图求出样本数据的中位数m1m2,并指出选用哪一个数据来估计总体的中位数更合理(需要叙述理由).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水污染现状与工业废水排放密切相关,某工厂深人贯彻科学发展观,努力提高污水收集处理水平,其污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为p0<p<1.经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.

某厂现有4个标准水量的A级水池,分别取样、检测,多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验,混合样本中只要有样本不达标,则混合样本的化验结果必不达标,若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放

现有以下四种方案:

方案一:逐个化验;

方案二:平均分成两组化验;方案三;三个样本混在一起化验,剩下的一个单独化验;

方案四:四个样本混在一起化验.

化验次数的期望值越小,则方案越"".

1)若,求2A级水样本混合化验结果不达标的概率;

2)①若,现有4A级水样本需要化验,请问:方案一、二、四中哪个最"?②若方案三方案四",求p的取值范围.

查看答案和解析>>

同步练习册答案