精英家教网 > 高中数学 > 题目详情
在椭圆C:
x2
a2
+
y2
b2
=
1(a>b>0)
中,当离心率e趋近于0,椭圆就趋近于圆,类比圆的面积公式,椭圆C的面积S椭圆=
 
考点:类比推理
专题:推理和证明
分析:半径为r的圆的面积公式为πr2=π•r•r,利用类比推理,可得椭圆C的面积.
解答: 解:半径为r的圆的面积公式为πr2=π•r•r,在椭圆C:
x2
a2
+
y2
b2
=
1(a>b>0)
中,当离心率e趋近于0,椭圆就趋近于圆,a,b无限接近圆的半径r,
∴椭圆C的面积S椭圆=πab.
故答案为:πab.
点评:本题考查类比推理,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某小型餐馆一天中要购买A,B两种蔬菜,A,B蔬菜每公斤的单价分别为2元和3 元.根据需要,A蔬菜至少要买6公斤,B蔬菜至少要买4公斤,而且一天中购买这两种蔬菜的总费用不能超过60元.
(1)写出一天中A蔬菜购买的公斤数x和B蔬菜购买的公斤数y之间的满足的不等式组;并在给定的坐标系中画出不等式组表示的平面区域(用阴影表示),
(2)如果这两种蔬菜加工后全部卖出,A,B两种蔬菜加工后每公斤的利润分别为2元和1元,餐馆如何采购这两种蔬菜使得利润最大,利润最大为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=
1
2
AD=2
,O为AD上一点,且 AO=1,平面外两点P,E满足PO=
3
2
,AE=1,EA⊥平面ABCD,PO∥EA.
(1)证明:BE∥平面PCD.
(2)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(2x+1-2t)的值域为R,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,过椭圆
x=5cosφ
y=sinφ
(φ为参数)的右焦点,斜率为
1
2
的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的
1
4
,且样本容量为200,则中间一组有频数为(  )
A、40B、32
C、0.2D、0.25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的左右焦点F1,F2的坐标为(-4,0)与(4,0),离心率e=2.
(1)求双曲线的方程;
(2)已知椭圆
x2
36
+
y2
20
=1
,点P是双曲线与椭圆两曲线在第一象限的交点,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设区域Ω={(x,y)|0≤x≤2,0≤y≤2},区域A={(x,y)|xy≤1,(x,y)∈Ω},在区域Ω中随机取一个点,则该点恰好在区域A中的概率为
 

查看答案和解析>>

同步练习册答案