【题目】设x,y,z为非零实数,满足xy+yz+zx=1,证明:
.
【答案】不等式的证明一般可以考虑运用作差法或者是利用分析法来证明。
【解析】
试题为使所证式有意义,
三数中至多有一个为0;据对称性,不妨设
,则
;
、当
时,条件式成为
,
,
,而
,
只要证,
,即
,也即
,此为显然;取等号当且仅当
.
、再证,对所有满足
的非负实数
,皆有
.显然,三数
中至多有一个为0,据对称性,
仍设
,则
,令
,
为锐角,以
为内角,构作
,则
,于是
,且由
知,
;于是
,即
是一个非钝角三角形.
下面采用调整法,对于任一个以
为最大角的非钝角三角形
,固定最大角
,将
调整为以
为顶角的等腰
,其中
,且设
,记
,据
知,
.今证明,
.即![]()
……①.
即要证
……②
先证
……③,即证
,
即
,此即
,也即
,即
,此为显然.
由于在
中,
,则
;而在
中,
,因此②式成为
……④,
只要证,
……⑤,即证
,注意③式以及
,只要证
,即
,也即
…⑥
由于最大角
满足:
,而
,则
,所以
,故⑥成立,因此⑤得证,由③及⑤得④成立,从而①成立,即
,因此本题得证.
科目:高中数学 来源: 题型:
【题目】已知函数![]()
相邻两对称轴间的距离为
,若将
的图象先向左平移
个单位,再向下平移1个单位,所得的函数
为奇函数.
(1)求
的解析式,并求
的对称中心;
(2)若关于
的方程
在区间
上有两个不相等的实根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题16分)某乡镇为了进行美丽乡村建设,规划在长为10千米的河流OC的一侧建一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数
,
(单位:千米)的图象,且曲线段的顶点为
;观光带的后一部分为线段BC,如图所示.
(1)求曲线段OABC对应的函数
的解析式;
(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQ,QP, PN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若二次函数f(x)=4x2-2(t-2)x-2t2-t+1在区间[-1,1]内至少存在一个值m,使得f(m)>0,则实数t的取值范围( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解共享单车在
市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了
人进行分析,得到如下列联表(单位:人).
经常使用 | 偶尔使用或不使用 | 合计 | |
|
|
|
|
|
|
|
|
合计 |
|
|
|
(1)根据以上数据,能否在犯错误的概率不超过
的前提下认为
市使用共享单车的情况与年龄有关;
(2)(i)现从所选取的
岁以上的网友中,采用分层抽样的方法选取
人,再从这
人中随机选出
人赠送优惠券,求选出的
人中至少有
人经常使用共享单车的概率;
(ii)将频率视为概率,从
市所有参与调查的网友中随机选取
人赠送礼品,记其中经常使用共享单车的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,椭圆
:
与双曲线
:
的焦点相同.
(1)求椭圆
与双曲线
的方程;
(2)过双曲线
的右顶点作两条斜率分别为
,
的直线
,
,分别交双曲线
于点
,
(
,
不同于右顶点),若
,求证:直线
的倾斜角为定值,并求出此定值;
(3)设点
,若对于直线
,椭圆
上总存在不同的两点
与
关于直线
对称,且
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com