【题目】设
,椭圆
:
与双曲线
:
的焦点相同.
(1)求椭圆
与双曲线
的方程;
(2)过双曲线
的右顶点作两条斜率分别为
,
的直线
,
,分别交双曲线
于点
,
(
,
不同于右顶点),若
,求证:直线
的倾斜角为定值,并求出此定值;
(3)设点
,若对于直线
,椭圆
上总存在不同的两点
与
关于直线
对称,且
,求实数
的取值范围.
【答案】(1)椭圆
的方程为
,双曲线
的方程为
;(2)详见解析.(3)见解析。
【解析】
(1)利用椭圆和双曲线的性质,结合焦点相同,建立方程,计算m值,即可。(2)设出直线
方程,代入双曲线方程,建立等式,计算P的坐标,同理得到Q的坐标,结合
,可以得到
,发现直线PQ与x轴平行,故证之。(3)结合题意,设出直线AB的方程,代入椭圆解析式中,建立方程,计算出AB的中点M坐标,而M又在直线l上,代入,结合题目所提供的不等式,建立不等关系,即可得到b的范围。
解:(1)由题意,
,所以
.
所以椭圆
的方程为
,双曲线
的方程为
.
(2)双曲线
的右顶点为
,因为
,不妨设
,则
,
设直线
的方程为
,
由
,得
,
则
,(
),
.
同理,
,
,
又
,所以
,
.
因为
,所以直线
与
轴平行,即
为定值
,倾斜角为0. ,
(3)设
,
,直线
的方程为
,
由
整理得
,
△
,故
.
,
,
设
的中点为
,则
,
,
又
在直线
上,所以
,
.
因为
,
,
所以![]()
![]()
,所以
.又
,
。
即
.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,求函数
的单调区间;
(2)若函数
在区间
上不单调,求实数
的取值范围;
(3)求证:
或
是函数
在
上有三个不同零点的必要不充分条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月,河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市发布高考综合改革实施方案,决定从2018年秋季入学的高中一年级学生开始实施“
”高考模式.所谓“
”,即“3”是指考生必选语文、数学、外语这三科;“1”是指考生在物理、历史两科中任选一科;“2”是指考生在生物、化学、思想政治、地理四科中任选两科.
(1)若某考生按照“
”模式随机选科,求选出的六科中含有“语文,数学,外语,物理,化学”的概率.
(2)新冠疫情期间,为积极应对“
”新高考改革,某地高一年级积极开展线上教学活动.教育部门为了解线上教学效果,从当地不同层次的学校中抽取高一学生2500名参加语数外的网络测试,并给前400名颁发荣誉证书,假设该次网络测试成绩服从正态分布,且满分为450分.
①考生甲得知他的成绩为270分,考试后不久了解到如下情况:“此次测试平均成绩为171分,351分以上共有57人”,请用你所学的统计知识估计甲能否获得荣誉证书,并说明理由;
②考生丙得知他的实际成绩为430分,而考生乙告诉考生丙:“这次测试平均成绩为201分,351分以上共有57人”,请结合统计学知识帮助丙同学辨别乙同学信息的真伪,并说明理由.
附:
;
;
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,对称轴为直线
的抛物线
与
轴交于
两点,其中点
的坐标为
,与
轴交于点
,作直线
.
![]()
(1)求抛物线的解析式;
(2)如图,点
是直线
下方抛物线上的一个动点,连结
.当
面积最大时,求点
的坐标;
(3)如图,在(2)的条件下,过点
作于
点
交
轴于点
将
绕点
旋转得到
在旋转过程中,当点
或点
落在
轴上(不与点![]()
重合)时,将
沿射线
平移得到
,在平移过程中,平面内是否存在点
使得四边形
是菱形?若存在,请直接写出所有符合条件的点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
是边长为
的正方形,
为等腰三角形,
,平面
平面
,动点
在棱
上,无论点
运动到何处时,总有
.
![]()
(1)试判断平面
与平面
是否垂直,并证明你的结论;
(2)若点
为
中点,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天津市某高中团委在2019年12月4日开展了以“学法、遵法、守法”为主题的学习活动.为检查该学校组织学生学习的效果,现从该校高一、高二、高三的学生中分别选取了4人,3人,3人作为代表进行问卷测试.具体要求:每位学生要从10个有关法律、法规的问题中随机抽出4个问题进行作答.
(1)若从这10名学生中任选3人,求这3名学生分别来自三个年级的概率;
(2)若这10人中的某学生能答对10道题中的7道题,另外3道题回答不对,记
表示该名学生答对问题的个数,求随机变量
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦距为
的椭圆
(
),如果满足“
”,则称此椭圆为“等差椭圆”.
(1)如果椭圆
(
)是“等差椭圆”,求
的值;
(2)如果椭圆
(
)是“等差椭圆”,过
作直线
与此“等差椭圆”只有一个公共点,求此直线的斜率;
(3)椭圆
(
)是“等差椭圆”,如果焦距为12,求此“等差椭圆”的方程;
(4)对于焦距为12的“等差椭圆”,点
为椭圆短轴的上顶点,
为椭圆上异于
点的任一点,
为
关于原点
的对称点(
也异于
),直线![]()
分别与
轴交于![]()
两点,判断以线段
为直径的圆是否过定点?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com