精英家教网 > 高中数学 > 题目详情
下表给出了从某校500名12岁男生中用简单随机抽样得出的120人的身高资料(单位:厘米):
分组人数频率
[122,126 )50.042
[126,130)80.067
[130,134 )100.083
[134,138)220.183
[138,142)y
[142,146)200.167
[146,150)110.092
[150,154)x0.050
[154,158)50.042
合计1201.00
(1)在这个问题中,总体是什么?并求出x与y的值;
(2)求表中x与y的值,画出频率分布直方图;
(3)试计算身高在147~152cm的总人数约有多少?
考点:频率分布直方图,频率分布表
专题:概率与统计
分析:(1)根据数据总体的定义及已知中从某校500名12岁男生中用简单随机抽样得出的120人的身高资料进行调查,我们易得到结论.根据各组的频率和为1,及频率=频数÷样本容量,可计算出x,y的值.
(2)由已知条件能作画出频率分布直方图.
(3)根据147~152cm范围内各组的频率,能计算身高在147~152cm的总人数.
解答: 解:(1)在这个问题中,总体是某校500名12岁男生身高,
∵样本容量为120,
[150,154)这一组的频率为0.050,
故x=120×0.050=6,
由于各组的频率和为1,
故y=1-(0.042+0.067+0.083+0.183+0.167+0.092+0.050+0.042)=0.275.
(2)由(1)知x=6,y=0.275.
由题意,画出频率分布直方图如下:

(3)身高在147~152cm的总人数约有:
500(0.092×
3
4
+0.050×
1
2
)=47(人),
∴身高在147~的总人数约为47人.
点评:本题考查的知识点是频率分布直言图及折线图,频率分布直方表,其中频率=频数÷样本容量=矩形的高×组矩是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a3+a2<0,那么a,a2,-a,-a2的大小关系是(  )
A、a2>-a>a>-a2
B、-a>a2>a>-a2
C、a2>-a2>a>-a
D、a2>-a2>-a>a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左顶点,F1、F2分别为双曲线的左、右焦点,P为双曲线上一点,G是△PF1F2的重心,若
GA
PF1
,则双曲线的离心率为(  )
A、3B、2
C、4D、与λ的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三角形OAB中,点O为原点,点B的坐标是(-3,4),点A在第一象限,向量
m
=(-1,0),记向量
m
与向量
OA
的夹角为α,则sinα的值为(  )
A、-
4+3
3
10
B、
4-3
3
10
C、
3
3
-4
10
D、
4+3
3
10

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=105°,B=30°,b=2
2
,则c等于(  )
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
.若a>0,函数h(x)=x•f(x)-x-ax2在(0,2)上有极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等差{an},lga1,lga2,lga4成等差数列,又bn=
1
a2n

(1)求证{bn}为等比数列.
(2)若{bn}前3项的和等于
7
24
,求{an}的首项a1和公差d.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
2
2
,计算下列各式的值:
(1)sinα-cosα;                
(2)
1
sin2α
+
1
cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:

一个首项为正数的等差数列{an},如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大?

查看答案和解析>>

同步练习册答案