精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x﹣klnx,常数k>0.
(I)若x=1是函数f(x)的一个极值点,求f(x)的单调区间;
(II)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取值范围;
(III)设函数F(x)=,求证:
F(1)F(2)F(3)…F(2n)>2n(n+1)n(n∈N*).
(Ⅰ)解:求导函数,可得
因为x=1是函数f(x)的一个极值点,f'(1)=0,
∴k=1,
所以
令f'(x)>0,可得x∈(1,+∞)∪(﹣∞,0),
令f'(x)<0,可得x∈(0,1)
故函数F(x)的单调递增区间是(1,+∞),(﹣∞,0),单调递减区间是(0,1).
(Ⅱ)解:因为函数g(x)=xf(x)在区间(1,2)上是增函数,
则g'(x)=2x﹣k(1+lnx)≥0对x∈(1,2)恒成立,
对x∈(1,2)恒成立        
,则知对x∈(1,2)恒成立.
所以在x∈(1,2)单调递增,
hmin(x)>h(1)=2
所以k≤2.
(Ⅲ)证明:F(x)==
F(1)F(2)F(3)…F(2n)=()()…(
因为()()=++
>(2n﹣k)(k+1)+2=2n+2+2nk﹣k2﹣k=2n+2+k(2n﹣k﹣1)>2n+2.
(k=0,1,2,3…n﹣1)
所以()()>2n+2,()()>2n+2,…,
)()>2n+2,()()>2n+2.
相乘,得:F(1)F(2)F(3)…F(2n)=()()…(
>(2n+2)n=2n(n+1)n
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案