精英家教网 > 高中数学 > 题目详情

设数列,且数列是等差数列,是等比数列.
(1)求数列的通项公式;
(2)设数列的前项和为,求的表达式;
(3)数列满足,求数列的最大项.

(1)
(2)
(3)数列是单调递减数列,最大项是

解析试题分析:解:(1)依题意得:( 
所以                2分
故当时,有

 ,         3分
又因为n=1时,也适合上式,
所以                    4分

            6分
(2)

 
            7分

                8分
上面两式相减得,
那么

所以               10分
(3)
,        12分

显然对任意的正整数都成立,
所以数列是单调递减数列,最大项是.            14分
考点:等比数列,累加法
点评:主要是通过递推关系式采用累加法求解通项公式和结合等比数列的公式求解,同时结合函数的性质来判定数列的单调性,进而求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等差数列的公差为,且成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和.数列满足:.
(1)求的通项.并比较的大小;
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和
(Ⅰ)求的通项公式;
(Ⅱ) 令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,
(1)若,求
(2)若,求的前6项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足S n + a n= 2n +1.
(1)写出a1a2a3, 并推测a n的表达式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下图是一个按照某种规律排列出来的三角形数阵

假设第行的第二个数为
(1)依次写出第七行的所有7个数字(不必说明理由);
(2)写出的递推关系(不必证明),并求出的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线,数列的首项,且
时,点恒在曲线上,数列{}满足
(1)试判断数列是否是等差数列?并说明理由;
(2)求数列的通项公式;
(3)设数列满足,试比较数列的前项和的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中
对自然数k,规定为{an}的k阶差分数列,其中
(1)已知数列{an}的通项公式,试判断是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足,求数列{an}的通项公式。
(3)对(2)中数列{an},是否存在等差数列{bn},使得对一切自然都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由。

查看答案和解析>>

同步练习册答案