精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin(x-?)cos(x-?)-cos2(x-?)(0≤?≤
π
2
)
为偶函数.
(I)求函数的单调减区间;
(II)把函数的图象向右平移
π
6
个单位(纵坐标不变),得到函数g(x)的图象,求方程g(x)+
1
2
=0
的解集.
(I)f(x)=
3
sin(x-?)cos(x-?)-cos2(x-?)(0≤?≤
π
2
)

=
3
2
sin2(x-φ)
-
1+cos2(x-φ)
2
=sin(2x-2φ-
π
6
)-
1
2

∵f(x)为偶函数,0≤?≤
π
2
且,∴-2φ-
π
6
=
π
2
+kπ
,k∈Z,解得φ=
π
6

则f(x)=sin(2x-
π
2
)-
1
2
=-cos2x-
1
2

由2kπ-π≤2x≤2kπ(k∈Z)得,kπ-
π
2
≤x≤kπ,
故所求的递减区间是[kπ-
π
2
,kπ](k∈Z),
(II)函数的图象向右平移
π
6
个单位,得到函数g(x)的图象,则g(x)=-cos(2x-
π
3
-
1
2

由方程g(x)+
1
2
=0
得,-cos(2x-
π
3
)=0,即cos(2x-
π
3
)=0,解得2x-
π
3
=
π
2
+kπ
(k∈Z),
x=
12
+
2
(k∈Z),
所求的解集为{x|x=
12
+
2
(k∈Z)}.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案