精英家教网 > 高中数学 > 题目详情
3.已知函数y=sinωx在[-$\frac{π}{3}$,$\frac{π}{3}}$]上为增函数,则ω的取值范围(  )
A.(0,3]B.(0,$\frac{3}{2}}$]C.[-3,0)D.[-$\frac{3}{2}$,0)

分析 由条件利用正弦函数的增区间可得$\frac{π}{3}$ω≤$\frac{π}{2}$,且ω>0,由此求得ω的取值范围.

解答 解:∵函数y=sinωx在[-$\frac{π}{3}$,$\frac{π}{3}}$]上为增函数,则有$\frac{π}{3}$ω≤$\frac{π}{2}$,且ω>0,
求得0<ω≤$\frac{3}{2}$,
故选:B.

点评 本题主要考查正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD.若棱AB,AD,AP两两垂直,长度分别为1,2,2,且向量$\overrightarrow{PC}$与$\overrightarrow{BD}$夹角的余弦值为$\frac{\sqrt{15}}{15}$.
(1)求CD的长度;
(2)求直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a∈R,复数z=(a2-4a+5)-6i,在复平面内表示$\overline{z}$的点位于第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=3n+m(m为常数,n∈N+)
(1)求a1,a2,a3
(2)若数列{an}为等比数列,求常数m的值及an
(3)对于(2)中的an,记f(n)=λa2n+1-4λan+1-7,若f(n)<0对任意的正整数n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=lg(x+1)+$\sqrt{3-x}$的定义域为(  )
A.[1,3]B.[-1,3]C.(1,3]D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tanα=2.
(1)求$\frac{{sin(π-α)+cos(α-\frac{π}{2})-cos(3π+α)}}{{cos(\frac{π}{2}+α)-sin(2π+α)+2sin(α-\frac{π}{2})}}$的值;
(2)求cos2α+sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.我舰在敌岛A处南偏西50°的B处,且A,B距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行.若我舰要用2小时追上敌舰,则其速度大小为14海里/小时.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用计算机随机产生的有序二元数组(x,y)满足-1≤x≤1,-1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O是△ABC内一点,λ$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{CO}$,且△OAB的面积是△ABC面积的$\frac{1}{4}$,则实数λ=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步练习册答案