【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合计 | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?
移动支付活跃用户 | 非移动支付活跃用户 | 总计 | |
男 | |||
女 | |||
总计 | 100 |
(Ⅱ)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”.为了做好调查工作,决定用分层抽样的方法从“移动支付达人”中抽取6人进行问卷调查,再从这6人中选派2人参加活动.求参加活动的2人性别相同的概率?
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ )在犯错误概率不超过0.005的前提下,能认为“移动支付活跃用户”与性别有关,
(Ⅱ)
【解析】分析:(Ⅰ)根据样本数据制成列联表,根据公式计算的值;查表比较与临界值的大小关系,作统计判;(Ⅱ)利用分层抽样确定抽取人数,利用列举法可得基本事件共个,其中参加活动的人性别相同有共个,由古典概型概率公式可得结果.
详解:(I)由表格数据可得列联表如下:
非移动支付活跃用户 | 移动支付活跃用户 | 合计 | |
男 | 25 | 20 | 45 |
女 | 15 | 40 | 55 |
合计 | 40 | 60 | 100 |
将列联表中的数据代入公式计算得:
所以在犯错误概率不超过0.005的前提下,能认为“移动支付活跃用户”与性别有关.
(II)抽取的男生人数为,设为A,B;
抽取的女生人数为, 设为
则有基本事件
共15个,
其中参加活动的2人性别相同有
共7个,
设事件为“从6人中选派2人参加活动.参加活动的2人性别相同”
则
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.
(1)求直线PC与平面ABC所成角的大小;
(2)求二面角B﹣AP﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,点为正方形边上异于点的动点,将沿翻折,得到如图2所示的四棱锥,且平面平面,点为线段上异于点的动点,则在四棱锥中,下列说法正确的有( )
A. 直线与直线必不在同一平面上
B. 存在点使得直线平面
C. 存在点使得直线与平面平行
D. 存在点使得直线与直线垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.
(1)求曲线C的轨迹方程
(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在上单调递增,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合集合,集合,且集合D满足.
(1)求实数a的值.
(2)对集合,其中,定义由中的元素构成两个相应的集合:,,其中是有序实数对,集合S和T中的元素个数分别为和,若对任意的,总有,则称集合具有性质P.
①请检验集合是否具有性质P,并对其中具有性质P的集合,写出相应的集合S和T.
②试判断m和n的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com