精英家教网 > 高中数学 > 题目详情

【题目】高铁、网购、移动支付和共享单车被誉为中国的新四大发明,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(Ⅰ)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?

移动支付活跃用户

非移动支付活跃用户

总计

总计

100

(Ⅱ)把每周使用移动支付6次及6次以上的用户称为移动支付达人”.为了做好调查工作,决定用分层抽样的方法从“移动支付达人”中抽取6人进行问卷调查,再从这6人中选派2人参加活动求参加活动的2人性别相同的概率?

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ )在犯错误概率不超过0.005的前提下,能认为移动支付活跃用户与性别有关,

(Ⅱ)

【解析】分析:根据样本数据制成列联表,根据公式计算的值;查表比较与临界值的大小关系,作统计判;(利用分层抽样确定抽取人数,利用列举法可得基本事件共个,其中参加活动的人性别相同有共由古典概型概率公式可得结果.

详解(I)由表格数据可得列联表如下:

非移动支付活跃用户

移动支付活跃用户

合计

25

20

45

15

40

55

合计

40

60

100

将列联表中的数据代入公式计算得

所以在犯错误概率不超过0.005的前提下,能认为移动支付活跃用户与性别有关.

(II)抽取的男生人数为,设为A,B;

抽取的女生人数为设为

则有基本事件

15个,

其中参加活动的2人性别相同有

7个,

设事件为“从6人中选派2人参加活动参加活动的2人性别相同”

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.

(1)求直线PC与平面ABC所成角的大小;
(2)求二面角B﹣AP﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,点为正方形上异于点的动点,将沿翻折,得到如图2所示的四棱锥,且平面平面,点为线段上异于点的动点,则在四棱锥中,下列说法正确的有( )

A. 直线与直线必不在同一平面上

B. 存在点使得直线平面

C. 存在点使得直线与平面平行

D. 存在点使得直线与直线垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象的一条切线为.

(1)设函数,讨论的单调性;

(2)若函数的图象恒与x轴有两个不同的交点M(,0),N(,0),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.

(1)求曲线C的轨迹方程

(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)设0x,求函数yx32x)的最大值;

2)解关于x的不等式x2-a+1x+a0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)x2g(x)x1.

(1)若存在xR使f(x)<b·g(x),求实数b的取值范围;

(2)F(x)f(x)mg(x)1mm2,且|F(x)|上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合集合,集合,且集合D满足.

(1)求实数a的值.

(2)对集合,其中,定义由中的元素构成两个相应的集合:,,其中是有序实数对,集合ST中的元素个数分别为,若对任意的,总有,则称集合具有性质P.

①请检验集合是否具有性质P并对其中具有性质P的集合,写出相应的集合ST.

②试判断mn的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

同步练习册答案