精英家教网 > 高中数学 > 题目详情
12.若集合M={x|y=2x+1},N={(x,y)|y=-x2},则M∩N=∅.

分析 求出集合M中x的范围确定出M,集合N表示开口向下,顶点为原点的抛物线上点的坐标,确定出两集合交集即可.

解答 解:∵M={x|y=2x+1},N={(x,y)|y=-x2},
∴M∩N=∅,
故答案为:∅

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知P是曲线$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(xy≠0)上的动点,F1,F2为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且$\overrightarrow{{F}_{1}M}$•$\overrightarrow{MP}$=0,则|$\overrightarrow{OM}$|的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若异面直线a、b所成的角为60°,则过空间一点P且与a、b所成的角都为60°的直线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足a8=2,an+1=$\frac{1}{1-{a}_{n}}$,则a1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足an+1=3an,且a2+a4+a9=9,则log3(a5+a7+a9)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.要设计两个矩形框架,甲矩形的面积是1m2,长为xm,乙矩形的面积为9m2,长为ym,若甲矩形的一条宽与乙矩形一条宽之和为1m,则x+y的最小值为16m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=$\left\{\begin{array}{l}{(4a-1)+4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$,是(-∞,+∞)上的减函数,则a的取值范围是[$\frac{1}{7}$,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列结论中正确的序号是①②③.
①函数y=ax(a>0且a≠1)与函数$y={log_a}{a^x}$(a>0且a≠1)的定义域相同;
②函数y=k•3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;
③函数$y=\frac{1}{2}+\frac{1}{{{2^x}-1}}$(x≠0)是奇函数且函数$y=x\;(\frac{1}{{{3^x}-1}}+\frac{1}{2})$(x≠0)是偶函数;
④若x1是函数f(x)的零点,且m<x1<n,则f(m)•f(n)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.符合{a}?P⊆{a,b,c}的集合P的个数有3个.

查看答案和解析>>

同步练习册答案