分析 将异面直线a,b平移到点P,结合图形可知,当使直线在面BPE的射影为∠BPE的角平分线时存在2条满足条件,当直线为∠EPD的角平分线时存在1条满足条件,则一共有3条满足条件.
解答
解:先将异面直线a,b平移到点P,
则∠BPE=60°,∠EPD=120°,
且∠BPE的角平分线与a和b的所成角为30°,
而∠EPD的角平分线与a和b的所成角为60°
∵60°>30°,
∴当使直线在面BPE的射影为∠BPE的角平分线时存在2条满足条件,当直线为∠EPD的角平分线时存在1条满足条件,
∴直线与a,b所成的角相等且等于60°有且只有3条,
故答案为:3.
点评 本题考查异面直线所成的角、异面直线所成的角的求法,以及射影等知识,考查空间想象能力、推理论证能力,考查转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)<f(2a) | B. | f(a2)<f(a) | C. | f(a2+a)<f(a) | D. | f(a2+1)>f(a) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com