精英家教网 > 高中数学 > 题目详情
5.已知${({m^2}+m)^{\frac{3}{5}}}≤{(3-m)^{\frac{3}{5}}}$,求实数m的取值范围.

分析 根据函数的单调性得到关于m的不等式,解出即可.

解答 解:(1)设函数$y={x^{\frac{3}{5}}}$,
函数为R上的单调递增函数    …(2分)
得,m2+m≤-m+3…(2分)
即,m2+2m-3≤0…(2分)
得,(m-1)(m+3)≤0
所以,m的取值范围为:m∈[-3,1]…(2分)

点评 本题考查了幂函数的单调性问题,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若定义在R上的函数f(x)满足f(x)=-f(x+$\frac{3}{2}$),且f(1)=1,则f(2017)等于(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2x+$\frac{1}{4}$x-5在区间(n,n+1)(n∈N+)内有零点,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=ax(a>0且a≠1)的图象均过定点(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知ab>0,且a+4b=1,则$\frac{1}{a}+\frac{1}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.化简$({a}^{3}{b}^{\frac{1}{2}})^{\frac{1}{2}}$÷(${a}^{\frac{1}{2}}$b${\;}^{\frac{1}{4}}$)(a>0,b>0)结果为(  )
A.aB.bC.$\frac{a}{b}$D.$\frac{b}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=1-$\frac{4}{2{a}^{x}+a}$(a>0且a≠1)是定义在R上的奇函数.
(Ⅰ)求a的值;
(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,$\overrightarrow{b}$=(1,-2),$\overrightarrow{a}$•$\overrightarrow{b}$=-10
(Ⅰ)求向量$\overrightarrow{a}$的坐标;
(Ⅱ)若$\overrightarrow{c}$=(6,-7),求|$\overrightarrow{a}$+$\overrightarrow{c}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的公共顶点,P,Q分别为双曲线和椭圆上不同于A,B的动点,且有$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R),设AP,BP,AQ,BQ的斜率分别为k1,k2,k3,k4,且m=
(k1,k2),n=(k2,k1) 
(1)求证:m⊥n;
(2)求$\frac{{k}_{2}}{{k}_{1}}$+$\frac{{k}_{1}}{{k}_{2}}$+$\frac{{k}_{3}}{{k}_{4}}$+$\frac{{k}_{4}}{{k}_{3}}$的值;
(3)设F2′,F2分别为双曲线和椭圆的右焦点,且PF2′∥QF2,试判断k12+k22+k32+k42是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案