精英家教网 > 高中数学 > 题目详情
△ABC的顶点A,B,C在正方形网格中的位置如图所示.则cos(B+C)=
 

考点:两角和与差的余弦函数
专题:三角函数的求值
分析:△ABC中,由余弦定理求得cosA的值,再根据cos(B+C)=-cosA可得结果.
解答: 解:由所给的图形可得AB=2
2
,BC=
17
,AC=
4+9
=
13

△ABC中,由余弦定理可得 cosA=
AB2+AC2-BC2
2AB•AC
=
8+13-17
4
2
13
=
26
26

∴cos(B+C)=-cosA=-
26
26

故答案为:-
26
26
点评:本题主要考查诱导公式、余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠DAB=60°.侧面PAD为正三角形,其所在的平面垂直于底面ABCD,G为AD边的中点.
(1)求证:BG⊥平面PAD;
(2)求三棱锥G-CDP的体积;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx,对于满足0<x1<x2<π的任意x1,x2,给出下列结论:
①(x2-x1)[f(x2)-f(x1)]>0
②x2f(x1)>x1f(x2
③f(x2)-f(x1)<x2-x1
f(x1)+f(x2)
2
<f(
x1+x2
2

其中正确结论的序号为
 
.(把所有正确结论的序号填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意a∈(0,1)∪(1,+∞),函数f(x)=
.
1-1
1loga(x-1)
.
的反函数f-1(x)的图象经过的定点的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零实数,若 f(2001)=1,则f(2005)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?数列{an},{bn}既是等差数列,又是等比数列”(  )
A、是特称命题并且是假命题
B、是全称命题并且是假命题
C、是特称命题并且是真命题
D、是全称命题并且是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A、2013×1006
B、2013×1007
C、2015×1007
D、2015×1008

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线xz-yz=1的两条渐近线与直线x=3围成的平面区域D内(包括边界)的任一点为(x,y),则目标函数z=x+4y的最大值为(  )
A、15B、12C、9D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足(z-3)(2-i)=5(i为虚数单位),则在复平面内z对应的点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步练习册答案