精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,平面平面分别是的中点。
求证:(Ⅰ)直线平面
(Ⅱ)平面平面。(12分)
见解析.
第一问利用线面平行的判定定理求解线面平行。在中,因为E、F分别为AP,AD的中点,
所以,得到证明。
第二问中,连接BD,因为AB=AD,
所以为正三角形,因为F是AD的中点,所以,因为F是AD的中点,所以
因为平面平面ABCD,从而利用面面垂直的判定定理得到。
证明:(I)在中,因为E、F分别为AP,AD的中点,
所以…3分,又因为平面PCD,PD平面PCD,
所以平面PCD。……….6分,
(II)连接BD,因为AB=AD,
所以为正三角形……….8分,
因为F是AD的中点,所以
因为平面平面ABCD,平面ABCD,平面PAD平面ABCD=AD,所以平面PAD,
又因为平面BEF,所以平面BEF平面PAD。……….12分,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面是矩形,平面
是线段上的点,是线段上的点,且

(Ⅰ)当时,证明平面
(Ⅱ)是否存在实数,使异面直线所成的角为?若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥中,底面是菱形,,底面的中点,中点。

(1)求证:∥平面
(2)求证:平面⊥平面
(3)求与平面所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知平行四边形ABCD中,∠ BAD = 600,AB=6, AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG。
(I)求证:直线CE//平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值. 
(Ⅲ)若直线AF与平面 ABCD所成角为,求证:FG⊥平面ABCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,均是边长为2的等边三角形,且它们所在平面互相垂直,.
(1)    求证: ||
(2)    求二面角的余弦值。.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是矩形,,且侧面是正三角形,平面平面

(Ⅰ)求证:
(Ⅱ)在棱上是否存在一点,使得二面角的大小为45°.若存在,试求的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在阳光下将一个球放在水平面上,球的影子伸到距球与地面接触点处,同一时刻,一个长,一端接触地面且与地面垂直的竹竿的影子长为,则该球的半径等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①过平面外一点,作与该平面成角的直线一定有无穷多条。
②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;
③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行;
④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等;
其中正确的命题序号为                          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PB⊥面ABC,∠ABC=90°,AB=BC=2,∠PAB=45°,点D,E,F分别是AC,AB,BC的中点。
(1)求证:EF⊥PD;
(2)求直线PF与平面PBD所成的角的大小;
(3)求二面角E-PF-B的大小。

查看答案和解析>>

同步练习册答案