精英家教网 > 高中数学 > 题目详情

【题目】甲题型:给出如图数阵表格形式,表格内是按某种规律排列成的有限个正整数.

(1)记第一行的自左至右构成数列的前项和,试求;

(2)记为第列第行交点的数字,观察数阵请写出表达式,若,试求出的值.

【答案】(1);(2)

【解析】分析:(1)观察表格中数据,找出共同特性,可得利用分组求和可得结果;(2)由(1)知,第族第一个数(首项)通过观察表格找出共同特性可得,现对可能取值进行赋值试探,然后确定.

详解(1)根据上述分析,数列其实就是第族的首项记,观察知:

归纳得:.

(2)由(1)知,第族第一个数(首项).通过观察表格,找出共同特性可得

.

于是观察归纳得:

(其中为行数,表示列数设)

,∵,现对可能取值进行赋值试探,然后确定.

,则,∵

易知,故必然,于是2017必在第64族的位置上,故2017是第64族中的第一行数.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数fnx)=xn+bx+cnZbcR).

1)若n=﹣1,且f11)=f1)=5,试求实数bc的值;

2)设n2,若对任意x1x2[11]|f2x1)﹣f2x2|≤6恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求适合下列条件的a的值.

(1)9∈(AB);(2){9}=AB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,在抛物线上且满足,当取最大值时,点恰好在以为焦点的双曲线上,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒肺炎疫情爆发以来,疫情防控牵挂着所有人的心. 某市积极响应上级部门的号召,通过沿街电子屏、微信公众号等各种渠道对此战“疫”进行了持续、深入的悬窗,帮助全体市民深入了解新冠状病毒,增强战胜疫情的信心. 为了检验大家对新冠状病毒及防控知识的了解程度,该市推出了相关的知识问卷,随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制频率分布直方图如图所示,把年龄落在区间内的人分别称为“青少年人”和“中老年人”. 经统计“青少年人”和“中老年人”的人数比为19:21. 其中“青少年人”中有40人对防控的相关知识了解全面,“中老年人”中对防控的相关知识了解全面和不够全面的人数之比是2:1.

1)求图中的值;

2)现采取分层抽样在中随机抽取8名市民,从8人中任选2人,求2人中至少有1人是“中老年人”的概率是多少?

3)根据已知条件,完成下面的2×2列联表,并根据统计结果判断:能够有99.9%的把握认为“中老年人”比“青少年人”更加了解防控的相关知识?

了解全面

了解不全面

合计

青少年人

中老年人

合计

附表及公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的最大值;

(2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;

(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的左、右焦点分别是,抛物线的焦点与点重合,点是抛物线与双曲线的一个交点,如图所示.

(1)求双曲线及抛物线的标准方程;

(2)设直线与双曲线的过一、三象限的渐近线平行,且交抛物线于两点,交双曲线于点若点是线段的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数,t≠0),其中0≤απ.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2ρ2sin θC3ρ2cos θ.

(1)C2C3交点的直角坐标;

(2)C1C2相交于点AC1C3相交于点B,求|AB|的最大值.

查看答案和解析>>

同步练习册答案