精英家教网 > 高中数学 > 题目详情
是不同的直线,是不同的平面,下列命题中正确的是(    )
A.若,则
B.若,则
C.若,则
D.若,则
C

试题分析:由可知的关系为:相交、平行或线在面内,故A、B错;由可在中a中找一条直线使,又,所以,而,所以,得,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥PABCD中,PA⊥平面ABCD,△ABC是正三角形,ACBD的交点M恰好是AC的中点,又∠CAD=30°,PAAB=4,点N在线段PB上,且.

(1)求证:BDPC
(2)求证:MN∥平面PDC
(3)设平面PAB∩平面PCDl,试问直线l是否与直线CD平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是边长为的正方形,,且

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,分别为的中点.

(1)求证:EF∥平面;
(2)若平面平面,且º,求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平行四边形ABCD(图1)中,AB=4,BC=5,对角线AC=3,将三角形ACD沿AC折起至PAC位置(图2),使二面角为600,G,H分别是PA,PC的中点.

(1)求证:PC平面BGH;
(2)求平面PAB与平面BGH夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是互不重合的直线,是互不重合的平面,给出下列命题:
①若
②若
③若不垂直于,则不可能垂直于内的无数条直线;
④若
⑤若.
其中正确命题的序号是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是三条不同的直线,是三个不同的平面,下列命题:
①若,则;          ②若,则
③若,则;  ④若,则.
其中真命题是_      __.(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,下列命题中正确的是(    )
A.若,
B.若,则
C.若
D.若

查看答案和解析>>

同步练习册答案