精英家教网 > 高中数学 > 题目详情
如图,平面的中点.

(1)求证:平面
(2)求证:平面平面.
(1)详见解析;(2)详见解析.

试题分析:(1)要证//平面,只须在平面内找到一条直线与平行,取中点,易证四边形为平行四边形,从而问题得证;(2)要证面面垂直,只要在其中一个平面内找到一条直线与另一个平面垂直即可,由得到,故可考虑证明平面,故需要在平面内再找一条线与垂直即可,而平面,所以,从而问题得证.
试题解析:证明:(1)取的中点,连接,

在△中,分别为的中点
所以,且
,且,所以
所以是平行四边形
所以//        2分
又因为平面平面
所以//平面        4分
(2)因为的中点
所以
因为平面平面
所以,又,
所以平面        6分
又因为是平行四边形,所以
所以平面
因为平面,所以平面平面       8分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正方体中,为棱的中点.

(1)求证:∥平面
(2)求证:平面⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.

(1)求证:PC⊥BC
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是菱形,,且侧面平面,点是棱的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:
(Ⅲ)若,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线(  )
A.不存在B.有且只有两条
C.有且只有三条D.有无数条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体,点分别是线段上的动点,观察直线.给出下列结论:
①对于任意给定的点,存在点,使得
②对于任意给定的点,存在点,使得
③对于任意给定的点,存在点,使得
④对于任意给定的点,存在点,使得

其中正确结论的个数是(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线和平面,给出下列四个命题:

其中真命题的有________(请填写全部正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正方体中,点是棱上的一个动点,平面交棱于点.则下列命题中假命题是(    )
A.存在点,使得//平面
B.存在点,使得平面
C.对于任意的点,平面平面
D.对于任意的点,四棱锥的体积均不变

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,下列命题中正确的是(    )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

同步练习册答案