精英家教网 > 高中数学 > 题目详情
求函数f(x)=(x-1)2+1在下列情况下的值域:
①x∈R,②x∈{-1,0,1},③x∈[-1,0],④x∈[2,3],⑤x∈[-1,2].
分析:由于f(x)=(x-1)2+1的对称轴为x=1,只有判断函数在所给区间上的单调性,结合二次函数的性质可求各区间上的值域
解答:解:①x∈R时,f(x)=(x-1)2+1≥1
∴函数的值域为:[1,+∞)
②x∈{-1,0,1}  
f(-1)=5,f(0)=2,f(1)=1
∴函数的值域{5,2,1}
③x∈[-1,0],函数单调递减,而f(-1)=5,f(0)=2
∴函数的值域[2,5]
④x∈[2,3]时,函数的对称轴x=1,函数在x∈[2,3]时,单调递增
而f(2)=2,f(3)=5
∴函数的值域[2,5]
⑤x∈[-1,2]函数在[-1,1]单调递减,在[1,2]单调递增,函数在x=1时取得最小值,在-1取得最大值
而f(1)=1,f(-1)=5
∴函数的值域[1,5]
点评:本题主要考查了二次函数在区间上的值域的求解,解题的关键是确定函数在各区间上的单调性,千万不能直接把区间的端点值直接代入分别作函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的单调区间;(简单说明理由,不必严格证明)
(2)证明g(x)的最小值为g(
2
2
);
(3)设已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
π
2
],则f1(x)=-1,x∈[-
π
2
π
2
],f2(x)=sinx,x∈[-
π
2
π
2
],设φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ1(x)-φ2(x)≤m恒成立,求p、m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-(k2+k+1)x+15,g(x)=k2x-k,其中k∈R.
(1)设p(x)=f(x)+g(x),若p(x)在(1,4)上有零点,求实数k的取值范围;
(2)设函数q(x)=
g(x)x≥0
f(x)x<0
是否存在实数k,对任意给定的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得q(x2)=q(x1)?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面语句编写的是求函数f(x)的函数值的算法,这个函数f(x)=
2x,x<3
2,x=3
x2-1,x>3
2x,x<3
2,x=3
x2-1,x>3

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案