精英家教网 > 高中数学 > 题目详情
15.函数$y=cosx,(-\frac{π}{3}<x≤\frac{5π}{6})$的值域为$[-\frac{\sqrt{3}}{2},1]$.

分析 先画出余弦函数的图象,由x的范围和图象求出y=cosx的最大值、最小值,可得答案.

解答 解:如右图余弦函数的图象:
∵$-\frac{π}{3}<x≤\frac{5π}{6}$,
∴由图得,当x=0时,y=cosx取最大值是1,
当x=$\frac{5π}{6}$时,y=cosx取最小值是$-\frac{\sqrt{3}}{2}$,
∴函数y=cosx的值域是$[-\frac{\sqrt{3}}{2},1]$,
故答案为:$[-\frac{\sqrt{3}}{2},1]$.

点评 本题考查余弦函数的图象与最值的应用,以及数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,M为BC的中点,BM=MC=2,AM=b-c,则△ABC面积最大值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线 $\frac{x^2}{{1+{k^2}}}-\frac{y^2}{{8-{k^2}}}=1$(k为常数)的焦点坐标是(  )
A.(0,±3)B.(±3,0)C.(±1,0)D.(0,±1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.连接椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的四个顶点构成的四边形的面积为4,其一个焦点与抛物线${y^2}=4\sqrt{3}x$的焦点重合,则该椭圆的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某蛋糕店出售一种蛋糕,这种蛋糕的保质期很短,必须当天卖掉,否则容易变质,该蛋糕店每天以每块16元的成本价格制作这种蛋糕若干块,然后以每块26元的价格出售,如果当天卖不完,剩下的蛋糕只能以每块6元低价出售.蛋糕店记录了100天该种蛋糕的日需求量n(单位:块,n∈N*)整理得如图:
(1)若该蛋糕店某一天制作19块蛋糕,求当天的利润y(单位:元)关于当天需求量n的函数解析式;
(2)若要求出售“出售的蛋糕块数不小于n”的频率不小于0.4,求n的最大值.
(3)若该蛋糕店这100天每天都制作19块蛋糕,试计算这100天蛋糕店所获利润的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)的定义域为R,当x>0时,f(x)=log2x;当-1≤x≤1时,f(x)+f(-x)=0;当$x<-\frac{1}{2}$时,$f(x-\frac{1}{2})-f(x+\frac{1}{2})=0$.则$f(-32)+f(-\frac{1}{32})$的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=lg(x+1)+\frac{1}{x}$的定义域是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设Sn为等差数列{an}的前n项和,a1=-2,S3=0,则{an}的公差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$a={({\frac{1}{2}})^{\frac{1}{2}}},b={({\frac{1}{2}})^{\frac{1}{3}}},c={log_{\frac{1}{2}}}2$,则(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案