精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow x=k\overrightarrow a+2\overrightarrow b$和$\overrightarrow y=\overrightarrow a-\overrightarrow b$,其中$\overrightarrow a=(-1,2)$,$\overrightarrow b=(4,2)$,k∈R.
(1)当k为何值时,有$\overrightarrow x$∥$\overrightarrow y$;
(2)若向量$\overrightarrow x$与$\overrightarrow y$的夹角为钝角,求实数k的取值范围.

分析 (1)根据题意,设$\overrightarrow x=t\overrightarrow y$,则有$k\overrightarrow a+2\overrightarrow b=t(\overrightarrow a-\overrightarrow b)$,结合向量$\overrightarrow{a}$、$\overrightarrow{b}$的坐标,可得t-k=2+t=0,解可得k的值,即可得答案;
(2)根据题意,若向量$\overrightarrow x$与$\overrightarrow y$的夹角为钝角,则有$\overrightarrow{x}•\overrightarrow{y}$<0,由数量积的计算公式可得$\overrightarrow x•\overrightarrow y=k{\overrightarrow a^2}-2{\overrightarrow b^2}=5k-40<0$,结合向量不共线分析可得答案.

解答 解:(1)由$\overrightarrow x∥\overrightarrow y$,设$\overrightarrow x=t\overrightarrow y$,
所以$k\overrightarrow a+2\overrightarrow b=t(\overrightarrow a-\overrightarrow b)$,即$(t-k)\overrightarrow a=(2+t)\overrightarrow b$,
又$\overrightarrow a=(-1,2)$,$\overrightarrow b=(4,2)$,得$\overrightarrow a$与$\overrightarrow b$不共线,
所以t-k=2+t=0,解得k=-2,
(2)因向量$\overrightarrow x$与$\overrightarrow y$的夹角为钝角,
所以$\overrightarrow x•\overrightarrow y=(k\overrightarrow a+2\overrightarrow b)•(\overrightarrow a-\overrightarrow b)<0$,
又$\overrightarrow a=(-1,2)$,$\overrightarrow b=(4,2)$,得$\overrightarrow a•\overrightarrow b=0$,
所以$\overrightarrow x•\overrightarrow y=k{\overrightarrow a^2}-2{\overrightarrow b^2}=5k-40<0$,即k<8,
又向量$\overrightarrow x$与$\overrightarrow y$不共线,由(1)知k≠-2,
所以k<8且k≠-2.

点评 本题考查向量的数量积运算,涉及向量平行的判定,关键是掌握向量数量积与向量夹角的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知定义在[-2,2]上的函数f(x)满足f(x)+f(-x)=0,且$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,若f(1-t)+f(1-t2)<0,则实数t的取值范围为[-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=3x-x3的单调递增区间为[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$tan({α-β})=\frac{4}{3}$.
(1)求cos(α-β)的值;
(2)若$0<α<\frac{π}{2},-\frac{π}{2}<β<0,sinβ=-\frac{5}{13}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a、b表示两条直线,α、β表示两个平面,则下列命题正确的是②③.(填写所有正确命题的序号)
①若a∥b,a∥α,则b∥α; ②若a∥b,a?α,b⊥β,则α⊥β;
③若α∥β,a⊥α,则a⊥β;④若α⊥β,a⊥b,a⊥α,则b⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某学校为解决教师的停车问题,在校内规划了一块场地,划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有(  )
A.${A}_{9}^{9}$种B.${A}_{12}^{8}$种C.8${A}_{8}^{8}$种D.2${A}_{8}^{8}$${A}_{4}^{4}$种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从5名男生和4名女生中选出4人去参加座谈会,问:
(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?
(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?
(Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α,β为锐角,若sinα=$\frac{4}{5}$,cosβ=$\frac{5}{13}$,则sin2α=$\frac{24}{25}$,cos(α+β)=-$\frac{33}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设P、Q、R、S是椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的四个顶点,四边形PQRS是圆C0:x2+y2=$\frac{36}{7}$的外切平行四边形,其面积为12$\sqrt{3}$.椭圆C1的内接△ABC的重心(三条中线的交点)为坐标原点O.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)△ABC的面积是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

同步练习册答案