分析 (1)把已知化切为弦,结合平方关系求得cos(α-β)的值;
(2)由已知求出cosβ,再由sinα=sin[(α-β)+β]展开两角和的正弦求解.
解答 解:(1)由$tan(α-β)=\frac{sin(α-β)}{cos(α-β)}=\frac{4}{3}$,
又sin2(α-β)+cos2(α-β)=1,解得$\left\{\begin{array}{l}{sin(α-β)=\frac{4}{5}}\\{cos(α-β)=\frac{3}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{sin(α-β)=-\frac{4}{5}}\\{cos(α-β)=-\frac{3}{5}}\end{array}\right.$.
∴cos(α-β)=$±\frac{3}{5}$;
(2)∵0<α<$\frac{π}{2}$,$-\frac{π}{2}$<β<0,
∴0<α-β<π.
又tan(α-β)=$\frac{4}{3}$>0,∴cos(α-β)=$\frac{3}{5}$.
∴sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}=\frac{4}{5}$.
又sinβ=$-\frac{5}{13}$,∴cosβ=$\sqrt{1-si{n}^{2}β}=\frac{12}{13}$.
∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=$\frac{4}{5}×\frac{12}{13}+\frac{3}{5}×(-\frac{5}{13})=\frac{33}{65}$.
点评 本题考查三角函数的化简求值,考查同角三角函数基本关系式及两角和的正弦的应用,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com