精英家教网 > 高中数学 > 题目详情
4.若函数y=ln(2x)+$\frac{e}{x}$+a(其中e为自然对数的底数)的最小值为ln2,则a的值为-2.

分析 求出导数和单调区间、极小值且为最小值,解方程即可得到所求a的值.

解答 解:函数y=ln(2x)+$\frac{e}{x}$+a的导数为
y′=$\frac{2}{2x}$-$\frac{e}{{x}^{2}}$=$\frac{x-e}{{x}^{2}}$(x>0),
当x>e时,y′>0,函数递增;
当0<x<e时,y′<0,函数递减.
可得函数y在x=e处取得极小值,且为最小值ln(2e)+1+a,
由题意可得ln(2e)+1+a=ln2,
即为a+2=0,解得a=-2.
故答案为:-2.

点评 本题考查导数的运用:求单调区间和极值、最值,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知$tan({α-β})=\frac{4}{3}$.
(1)求cos(α-β)的值;
(2)若$0<α<\frac{π}{2},-\frac{π}{2}<β<0,sinβ=-\frac{5}{13}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α,β为锐角,若sinα=$\frac{4}{5}$,cosβ=$\frac{5}{13}$,则sin2α=$\frac{24}{25}$,cos(α+β)=-$\frac{33}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(ax-$\frac{3}{4x}$+$\frac{2}{3}$)(x-$\frac{2}{x}$)6的展开式中各项系数的和为16,则展开式中x3项的系数为(  )
A.974B.$\frac{63}{2}$C.57D.33

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(-1<ξ<0)=$\frac{1}{2}-$p.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.向面积为S的平行四边形ABCD内任投一点M,则△MCD的面积小于$\frac{S}{3}$的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设P、Q、R、S是椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的四个顶点,四边形PQRS是圆C0:x2+y2=$\frac{36}{7}$的外切平行四边形,其面积为12$\sqrt{3}$.椭圆C1的内接△ABC的重心(三条中线的交点)为坐标原点O.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)△ABC的面积是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在(3x+2y-1)10的展开式中,不含y的所有项的系数和为210

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义在区间[-2,t](t>-2)上的函数f(x)=(x2-3x+3)ex(其中e为自然对数的底).
(1)当t>1时,求函数y=f(x)的单调区间;
(2)设m=f(-2),n=f(t),求证:m<n;
(3)设g(x)=f(x)+(x-2)ex,当x>1时,试判断方程g(x)=x的根的个数.

查看答案和解析>>

同步练习册答案